Skip to main content

Dataset Exchange API Client Library

Project description

DX API Client Library

Welcome to the DX API Client Library! This library provides a convenient Python interface to interact with the DX API, allowing you to manage datasets, installations, and perform various operations with ease.

Table of Contents

Features

  • Authenticate with the DX API using JWT tokens.
  • Manage installations and datasets.
  • Upload and download data to and from datasets.
  • Synchronous and asynchronous support.
  • Context managers for handling authentication scopes.

Installation

You can install the library using pip:

pip install dx-api-client

Note: Replace dx-api-client with the actual package name when it's published.

Prerequisites

  • Python 3.10 or higher.
  • An application ID (app_id) and a corresponding private key in PEM format.
  • DX API access credentials.

Getting Started

Authentication

The library uses JWT tokens for authentication. You need to provide your app_id and the path to your private key file when initializing the client.

Initialization

from dx_api_client import DX

# Initialize the client
dx = DX(app_id='your_app_id', private_key_path='path/to/private_key.pem')

Alternatively, you can set the environment variables DX_CONFIG_APP_ID and DX_CONFIG_PRIVATE_KEY_PATH:

export DX_CONFIG_APP_ID='your_app_id'
export DX_CONFIG_PRIVATE_KEY_PATH='path/to/private_key.pem'

And initialize the client without arguments:

dx = DX()

Usage

Who Am I

Retrieve information about the authenticated user:

user_info = dx.whoami()
print(user_info)

Managing Installations

Listing Installations

installations = dx.get_installations()
for installation in installations:
    print(installation.name)

Accessing an Installation Context

Use the installation context to perform operations related to a specific installation:

# Find an installation by name or ID
installation = dx.installations.find(install_id=1)

# Use the installation context
with dx.installation(installation) as ctx:
    # Perform operations within the context
    datasets = list(ctx.datasets)
    for dataset in datasets:
        print(dataset.name)

Or enter context with a lookup by name:

with dx.installation(install_id=1) as ctx:
    # Perform operations within the context
    datasets = list(ctx.datasets)
    for dataset in datasets:
        print(dataset.name)

Managing Datasets

Listing Datasets

with dx.installation(installation) as ctx:
    for dataset in ctx.datasets:
        print(dataset.name)

Creating a Dataset

from dx_api_client import DatasetSchema, SchemaProperty

# Define the schema
schema = DatasetSchema(
    properties=[
        SchemaProperty(name='id', type='string', required=True),
        SchemaProperty(name='value', type='number', required=True),
    ],
    primary_key=['id']
)

# Create the dataset
with dx.installation(installation) as ctx:
    new_dataset = ctx.datasets.create(
        name='My Dataset',
        description='A test dataset',
        schema=schema.model_dump()  # this can also be defined as a dictionary
    )

Uploading Data to a Dataset

data = [
    {'id': '1', 'value': 10},
    {'id': '2', 'value': 20},
]

with dx.installation(installation) as ctx:
    dataset_ops = ctx.datasets.find(name='My Dataset')
    dataset_ops.load(data, validate_records=True)  # validate_records=True will validate the records against the schema using Pydantic

Retrieving Records from a Dataset

with dx.installation(installation) as ctx:
    dataset_ops = ctx.datasets.find(name='My Dataset')
    records = dataset_ops.records()
    for record in records:
        print(record)

Asynchronous Usage

The library supports asynchronous operations using async/await.

import asyncio

async def main():
    dx = DX()
    async with dx.installation(installation) as ctx:
        async for dataset in ctx.datasets:
            print(dataset.name)

        dataset = await ctx.datasets.find(name='My Dataset')

        data = [
            {'id': '1', 'value': 10},
            {'id': '2', 'value': 20},
        ]

        await dataset.load(data)

        async for record in dataset.records():
            print(record)

asyncio.run(main())

Examples

Example: Loading Data from a File

with dx.installation(installation) as ctx:
    dataset = ctx.datasets.get(id='00000000-0000-0000-0000-000000000000')
    dataset.load_from_file('data.csv')

Example: Uploading Data from a URL

with dx.installation(installation) as ctx:
    dataset = ctx.datasets.find(name='My Dataset')
    dataset.load_from_url('https://example.com/data.csv')

Note: This README assumes that the package name is dx-api-client and that the code is properly packaged and available for installation via pip. Adjust the instructions accordingly based on the actual package name and installation method.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mig_dx_api-0.1.3.tar.gz (54.1 kB view details)

Uploaded Source

Built Distribution

mig_dx_api-0.1.3-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file mig_dx_api-0.1.3.tar.gz.

File metadata

  • Download URL: mig_dx_api-0.1.3.tar.gz
  • Upload date:
  • Size: 54.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for mig_dx_api-0.1.3.tar.gz
Algorithm Hash digest
SHA256 46e4a4c087c871c29fd6d186e6545e1cb28ab7f8d4af7086c6f87c34565a70b1
MD5 beffbdf120ea59c54237524b7538fcff
BLAKE2b-256 be22c049e16ffc0e11d81a6d014267fdb5450d2a7ec1df8239a4ff468b4b36e7

See more details on using hashes here.

File details

Details for the file mig_dx_api-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: mig_dx_api-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for mig_dx_api-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 f8a3cc5d55ff8c2d6000ecf3339b6cdbadc175517b21e912b6f8628aec792a82
MD5 930cd8442e8c563c0103774c2bc5b490
BLAKE2b-256 e430733767a681c6c2fceac86eba416e1cb48b8a747b31dd04d8891ce9cffd9a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page