A package that works with the DHI dfs libraries to facilitate creating, writing and reading dfs0, dfs2, dfs3, dfsu and mesh files.
Project description
mikeio: input/output of MIKE files in python
Facilitate creating, reading and writing dfs0, dfs2, dfs1 and dfs3, dfsu and mesh files. Reading Res1D data.
Requirements
Installation
From PyPI:
pip install mikeio
Or development version:
pip install https://github.com/DHI/mikeio/archive/master.zip
Examples
Reading data from dfs0, dfs1, dfs2, dfsu
>>> import mikeio
>>> ds = mikeio.read("random.dfs0")
>>> ds
DataSet(data, time, names)
Number of items: 2
Shape: (1000,)
2017-01-01 00:00:00 - 2017-07-28 03:00:00
>>> ds = mikeio.read("random.dfs1")
>>> ds
DataSet(data, time, names)
Number of items: 1
Shape: (100, 3)
2012-01-01 00:00:00 - 2012-01-01 00:19:48
Reading dfs0 file into Pandas DataFrame
from mikeio import Dfs0
dfs = Dfs0()
ts = dfs.read_to_pandas('simple.dfs0')
Create simple timeseries
from datetime import datetime, timedelta
import numpy as np
from mikeio import Dfs0
# create a list containing data for each item
data = []
# Some random values for first (and only) item
d = np.random.random([100])
data.append(d)
dfs = Dfs0()
dfs.create(filename='simple.dfs0',
data=data,
start_time=datetime(2017, 1, 1),
dt=60)
Create equidistant dfs0 with weekly timestep
from mikeio import Dfs0
from mikeio.eum import TimeStep
d1 = np.random.random([1000])
d2 = np.random.random([1000])
data = []
data.append(d1)
data.append(d2)
dfs = Dfs0()
dfs.create(filename='random.dfs0',
data=data,
start_time=datetime(2017, 1, 1),
timeseries_unit=TimeStep.DAY,
dt=7,
names=['Random1', 'Random2'],
title='Hello Test')
For more examples on timeseries data see this notebook
Read dfs2 data
from mikeio import Dfs2
dfs2File = r"20150101-DMI-L4UHfnd-NSEABALTIC-v01-fv01-DMI_OI.dfs2"
dfs = Dfs2()
res = dfs.read(dfs2File)
res.names
Create dfs2
For a complete example of conversion from netcdf to dfs2 see this notebook.
Another example of downloading meteorlogical forecast from the Global Forecasting System and converting it to a dfs2 ready to be used by a MIKE 21 model.
Read Res1D file Return Pandas DataFrame
import res1d as r1d
p1 = r1d.ExtractionPoint()
p1.BranchName = 'branch1'
p1.Chainage = 10.11
p1.VariableType = 'Discharge'
ts = r1d.read('res1dfile.res1d', [p1])
Read dfsu files
import matplotlib.pyplot as plt
from mikeio import Dfsu
dfs = Dfsu()
filename = "HD.dfsu"
res = dfs.read(filename)
idx = dfs.find_closest_element_index(x=608000, y=6907000)
# data has two dimensions time, x
plt.plot(res.time, res.data[0][:,idx])
Misc utilities
to query variable type, time series types (useful when creating a new dfs file)
>>> from mikeio.dfs_util import type_list, unit_list
>>> type_list('Water level')
{100000: 'Water Level', 100307: 'Water level change'}
>>> unit_list(100307)
{1000: 'meter', 1003: 'feet'}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file mikeio-0.3.0.tar.gz
.
File metadata
- Download URL: mikeio-0.3.0.tar.gz
- Upload date:
- Size: 17.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 168653d946ee297a93c43ccf4b2c1db559521ba2c5e39faf924458f8853d8d9b |
|
MD5 | 147a00cdf1bb05da86d2c1b619fe033e |
|
BLAKE2b-256 | a8af4e5267d5746eaca5c462494817fe67d8ce368a36ea5da75549eba638ffb3 |