Skip to main content

A package that works with the DHI dfs libraries to facilitate creating, writing and reading dfs, res1d and mesh files.

Project description

mikeio: input/output of MIKE files in python

https://dhi.github.io/mikeio/

Facilitate creating, reading and writing dfs0, dfs2, dfs1 and dfs3, dfsu and mesh files. Reading Res1D data.

Requirements

In a future version of mikeio we will try to include MIKE SDK to avoid having to install this separately.

Installation

From PyPI: PyPI version

pip install mikeio

Or development version:

pip install https://github.com/DHI/mikeio/archive/master.zip

Examples

Reading data from dfs0, dfs1, dfs2, dfsu

Generic read method to read values, if you need additional features such as coordinates, use specialised classes instead e.g. Dfsu

>>> import mikeio
>>> ds = mikeio.read("random.dfs0")
>>> ds
DataSet(data, time, items)
Number of items: 2
Shape: (1000,)
2017-01-01 00:00:00 - 2017-07-28 03:00:00

>>> ds = mikeio.read("random.dfs1")
>>> ds
DataSet(data, time, items)
Number of items: 1
Shape: (100, 3)
2012-01-01 00:00:00 - 2012-01-01 00:19:48

Reading dfs0 file into Pandas DataFrame

>>>  from mikeio import Dfs0
>>>  dfs = Dfs0()
>>>  ts = dfs.to_dataframe('simple.dfs0')

Create simple timeseries

>>>  from datetime import datetime, timedelta
>>>  import numpy as np
>>>  from mikeio import Dfs0
>>>  data = []
>>>  d = np.random.random([100])
>>>  data.append(d)
>>>  dfs = Dfs0()
>>>  dfs.create(filename='simple.dfs0',
>>>            data=data,
>>>            start_time=datetime(2017, 1, 1),
>>>            dt=60)

Create timeseries from dataframe

import pandas as pd
import mikeio
>>> df = pd.read_csv(
...         "tests/testdata/co2-mm-mlo.csv",
...         parse_dates=True,
...         index_col="Date",
...         na_values=-99.99,
...     )
>>> df.to_dfs0("mauna_loa.dfs0")

For more examples on timeseries data see this notebook

Read dfs2 data

>>>  from mikeio import Dfs2
>>> ds = dfs.read("tests/testdata/random.dfs2")
>>> ds
DataSet(data, time, items)
Number of items: 1
Shape: (3, 100, 2)
2012-01-01 00:00:00 - 2012-01-01 00:00:24
>>> ds.items
[testing water level <Water Level> (meter)]

Create dfs2

For a complete example of conversion from netcdf to dfs2 see this notebook.

Another example of downloading meteorlogical forecast from the Global Forecasting System and converting it to a dfs2 ready to be used by a MIKE 21 model.

Read Res1D file Return Pandas DataFrame

>>>  import res1d as r1d
>>>  p1 = r1d.ExtractionPoint()
>>>  p1.BranchName  = 'branch1'
>>>  p1.Chainage = 10.11
>>>  p1.VariableType  = 'Discharge'
>>>  ts = r1d.read('res1dfile.res1d', [p1])

Read dfsu files

>>>  import matplotlib.pyplot as plt
>>>  from mikeio import Dfsu
>>>  dfs = Dfsu()
>>>  filename = "HD.dfsu"
>>>  res = dfs.read(filename)
>>>  idx = dfs.find_closest_element_index(x=608000, y=6907000)
>>>  plt.plot(res.time, res.data[0][:,idx])

Timeseries

Items, units

Useful when creating a new dfs file

>>> from mikeio.eum import EUMType, EUMUnit
>>> EUMType.Temperature
<EUMType.Temperature: 100006>
>>> EUMType.Temperature.units
[degree Celsius, degree Fahrenheit, degree Kelvin]
>>> EUMUnit.degree_Kelvin
degree Kelvin

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mikeio-0.4.1.tar.gz (34.5 kB view details)

Uploaded Source

File details

Details for the file mikeio-0.4.1.tar.gz.

File metadata

  • Download URL: mikeio-0.4.1.tar.gz
  • Upload date:
  • Size: 34.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for mikeio-0.4.1.tar.gz
Algorithm Hash digest
SHA256 6d716b75dbf57400284e5b07dfdc6f533a71f4a67d7a44204fc73cc82735c985
MD5 c4382a108f2d67583722552dbc9dd8e6
BLAKE2b-256 5574e6b2d23e0a2a92046909cb5682fbf1f252bf2fd0b251db397ba20e3e0d16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page