Skip to main content

A package that works with the DHI dfs libraries to facilitate creating, writing and reading dfs, res1d and mesh files.

Project description

Python package

mikeio: input/output of MIKE files in python

https://dhi.github.io/mikeio/

Facilitate creating, reading and writing dfs0, dfs2, dfs1 and dfs3, dfsu and mesh files. Reading Res1D data.

Requirements

  • Windows operating system
  • Python x64 3.6, 3.7 or 3.8 Python version
  • VC++ redistributables (already installed if you have MIKE)

More info about dependancies

Installation

From PyPI: PyPI version

pip install mikeio

Or development version:

pip install https://github.com/DHI/mikeio/archive/master.zip

Examples

Reading data from dfs0, dfs1, dfs2, dfsu

Generic read method to read values, if you need additional features such as coordinates, use specialised classes instead e.g. Dfsu

>>> import mikeio
>>> ds = mikeio.read("random.dfs0")
>>> ds
DataSet(data, time, items)
Number of items: 2
Shape: (1000,)
2017-01-01 00:00:00 - 2017-07-28 03:00:00

>>> ds = mikeio.read("random.dfs1")
>>> ds
DataSet(data, time, items)
Number of items: 1
Shape: (100, 3)
2012-01-01 00:00:00 - 2012-01-01 00:19:48

Reading dfs0 file into Pandas DataFrame

>>>  from mikeio import Dfs0
>>>  dfs = Dfs0()
>>>  ts = dfs.to_dataframe('simple.dfs0')

Create simple timeseries

>>>  from datetime import datetime, timedelta
>>>  import numpy as np
>>>  from mikeio import Dfs0
>>>  data = []
>>>  d = np.random.random([100])
>>>  data.append(d)
>>>  dfs = Dfs0()
>>>  dfs.create(filename='simple.dfs0',
>>>            data=data,
>>>            start_time=datetime(2017, 1, 1),
>>>            dt=60)

Create timeseries from dataframe

import pandas as pd
import mikeio
>>> df = pd.read_csv(
...         "tests/testdata/co2-mm-mlo.csv",
...         parse_dates=True,
...         index_col="Date",
...         na_values=-99.99,
...     )
>>> df.to_dfs0("mauna_loa.dfs0")

For more examples on timeseries data see this notebook

Read dfs2 data

>>>  from mikeio import Dfs2
>>> ds = dfs.read("tests/testdata/random.dfs2")
>>> ds
DataSet(data, time, items)
Number of items: 1
Shape: (3, 100, 2)
2012-01-01 00:00:00 - 2012-01-01 00:00:24
>>> ds.items
[testing water level <Water Level> (meter)]

Create dfs2

For a complete example of conversion from netcdf to dfs2 see this notebook.

Another example of downloading meteorlogical forecast from the Global Forecasting System and converting it to a dfs2 ready to be used by a MIKE 21 model.

Read Res1D file Return Pandas DataFrame

>>>  from mikeio import res1d
>>>  # Query the discharge time series at chainage 10.1 of branch1
>>>  q1 = res1d.QueryData('Discharge', 'branch1', 10.1)
>>>  # Query all the discharge time series of branch2
>>>  q2 = res1d.QueryData('Discharge', 'branch2')
>>>  # Query all the water level time series in the file
>>>  q3 = res1d.QueryData('WaterLevel')
>>>  # Combine the queries in a list
>>>  queries = [q1, q2, q3]
>>>  # The returned ts object is a pandas DataFrame
>>>  ts = res1d.read('res1dfile.res1d', queries)

Read Xns11 file Return Pandas DataFrame

>>>  import matplotlib.pyplot as plt
>>>  from mikeio import xns11
>>>  # Query the geometry of chainage 58.68 of topoid1 at reach1
>>>  q1 = xns11.QueryData('topoid1', 'reach1', 58.68)
>>>  # Query the geometry of all chainages of topoid1 at reach2
>>>  q2 = xns11.QueryData('topoid1', 'reach2')
>>>  # Query the geometry of all chainages of topoid2
>>>  q3 = xns11.QueryData('topoid2')
>>>  # Combine the queries in a list
>>>  queries = [q1, q2, q3]
>>>  # The returned geometry object is a pandas DataFrame
>>>  geometry = xns11.read('xsections.xns11', queries)
>>>  # Plot geometry of chainage 58.68 of topoid1 at reach1
>>>  plt.plot(geometry['x topoid1 reach1 58.68'],geometry['z topoid1 reach1 58.68'])
>>>  plt.xlabel('Horizontal [meter]')
>>>  plt.ylabel('Elevation [meter]')

Geometry

Read dfsu files

>>>  import matplotlib.pyplot as plt
>>>  from mikeio import Dfsu
>>>  dfs = Dfsu()
>>>  filename = "HD.dfsu"
>>>  res = dfs.read(filename)
>>>  idx = dfs.find_closest_element_index(x=608000, y=6907000)
>>>  plt.plot(res.time, res.data[0][:,idx])

Timeseries

Items, units

Useful when creating a new dfs file

>>> from mikeio.eum import EUMType, EUMUnit
>>> EUMType.Temperature
<EUMType.Temperature: 100006>
>>> EUMType.Temperature.units
[degree Celsius, degree Fahrenheit, degree Kelvin]
>>> EUMUnit.degree_Kelvin
degree Kelvin

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mikeio-0.4.3.tar.gz (4.7 MB view details)

Uploaded Source

File details

Details for the file mikeio-0.4.3.tar.gz.

File metadata

  • Download URL: mikeio-0.4.3.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for mikeio-0.4.3.tar.gz
Algorithm Hash digest
SHA256 acd1281f75f8a688188adb84ea7938b82e3f90996323b06f142b9902eda0ff6c
MD5 887517ee138bac6671371787d6807ed6
BLAKE2b-256 bda7cdf9b79ab10848439261d32c64d3cc683adbd1255ca739247c71b79d4562

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page