A package that works with the DHI dfs libraries to facilitate creating, writing and reading dfs, res1d and mesh files.
Project description
MIKE IO: input/output of MIKE files in python
Read, write and manipulate dfs0, dfs1, dfs2, dfs3, dfsu and mesh files. Read res1d and xns11 files.
Facilitates common data processing workflows for MIKE files.
Requirements
- Windows operating system
- Python x64 3.6, 3.7 or 3.8
- VC++ redistributables (already installed if you have MIKE)
Important Note!
The upcoming version 0.5 of mikeio, will have a lot of new functionality, but also several breaking changes to the API !! It is planned to be released at latest Sept 7.
Installation
From PyPI:
pip install mikeio
Or development version:
pip install https://github.com/DHI/mikeio/archive/master.zip
Examples
Reading data from dfs0, dfs1, dfs2, dfsu
Generic read
method to read values, if you need additional features such as coordinates, use specialised classes instead e.g. Dfsu
>>> import mikeio
>>> ds = mikeio.read("random.dfs0")
>>> ds
<mikeio.DataSet>
Dimensions: (1000,)
Time: 2017-01-01 00:00:00 - 2017-07-28 03:00:00
Items:
0: VarFun01 <Water Level> (meter)
1: NotFun <Water Level> (meter)
>>> ds = mikeio.read("random.dfs1")
>>> ds
<mikeio.DataSet>
Dimensions: (100, 3)
Time: 2012-01-01 00:00:00 - 2012-01-01 00:19:48
Items:
0: testing water level <Water Level> (meter)
Reading dfs0 file into Pandas DataFrame
>>> from mikeio import Dfs0
>>> dfs = Dfs0('simple.dfs0')
>>> ts = dfs.to_dataframe()
Write simple timeseries
>>> from datetime import datetime
>>> import numpy as np
>>> from mikeio import Dfs0
>>> data = [np.random.random([100])]
>>> dfs = Dfs0()
>>> dfs.write('simple.dfs0', data, start_time=datetime(2017, 1, 1), dt=60)
Write timeseries from dataframe
import pandas as pd
import mikeio
>>> df = pd.read_csv(
... "tests/testdata/co2-mm-mlo.csv",
... parse_dates=True,
... index_col="Date",
... na_values=-99.99,
... )
>>> df.to_dfs0("mauna_loa.dfs0")
For more examples on timeseries data see this notebook
Read dfs2 data
>>> from mikeio import Dfs2
>>> dfs = Dfs2("random.dfs2")
>>> ds = dfs.read()
>>> ds
<mikeio.DataSet>
Dimensions: (3, 100, 2)
Time: 2012-01-01 00:00:00 - 2012-01-01 00:00:24
Items:
0: testing water level <Water Level> (meter)
Create dfs2
For a complete example of conversion from netcdf to dfs2 see this notebook.
Another example of downloading meteorological forecast from the Global Forecasting System and converting it to a dfs2 ready to be used by a MIKE 21 model.
Read Res1D file Return Pandas DataFrame
>>> from mikeio import res1d
>>> # Query the discharge time series at chainage 10.1 of branch1
>>> q1 = res1d.QueryData('Discharge', 'branch1', 10.1)
>>> # Query all the discharge time series of branch2
>>> q2 = res1d.QueryData('Discharge', 'branch2')
>>> # Query all the water level time series in the file
>>> q3 = res1d.QueryData('WaterLevel')
>>> # Combine the queries in a list
>>> queries = [q1, q2, q3]
>>> # The returned ts object is a pandas DataFrame
>>> ts = res1d.read('res1dfile.res1d', queries)
Read Xns11 file Return Pandas DataFrame
>>> import matplotlib.pyplot as plt
>>> from mikeio import xns11
>>> # Query the geometry of chainage 58.68 of topoid1 at reach1
>>> q1 = xns11.QueryData('topoid1', 'reach1', 58.68)
>>> # Query the geometry of all chainages of topoid1 at reach2
>>> q2 = xns11.QueryData('topoid1', 'reach2')
>>> # Query the geometry of all chainages of topoid2
>>> q3 = xns11.QueryData('topoid2')
>>> # Combine the queries in a list
>>> queries = [q1, q2, q3]
>>> # The returned geometry object is a pandas DataFrame
>>> geometry = xns11.read('xsections.xns11', queries)
>>> # Plot geometry of chainage 58.68 of topoid1 at reach1
>>> plt.plot(geometry['x topoid1 reach1 58.68'],geometry['z topoid1 reach1 58.68'])
>>> plt.xlabel('Horizontal [meter]')
>>> plt.ylabel('Elevation [meter]')
Read dfsu files
>>> import matplotlib.pyplot as plt
>>> from mikeio import Dfsu
>>> dfs = Dfsu("HD.dfsu")
>>> ds = dfs.read()
>>> idx = dfs.find_nearest_element(x=608000, y=6907000)
>>> plt.plot(ds.time, ds.data[0][:,idx])
Items, units
Useful when creating a new dfs file
>>> from mikeio.eum import EUMType, EUMUnit
>>> EUMType.Temperature
<EUMType.Temperature: 100006>
>>> EUMType.Temperature.units
[degree Celsius, degree Fahrenheit, degree Kelvin]
>>> EUMUnit.degree_Kelvin
degree Kelvin
Tested
MIKE IO is tested extensively. 93% total test coverage.
See detailed test coverage report below:
----------- coverage: platform win32, python 3.7.4-final-0 -----------
Name Stmts Miss Cover
--------------------------------------------
mikeio\__init__.py 33 1 97%
mikeio\aggregator.py 104 9 91%
mikeio\dfs.py 75 5 93%
mikeio\dfs0.py 186 34 82%
mikeio\dfs1.py 75 5 93%
mikeio\dfs2.py 118 10 92%
mikeio\dfs3.py 160 78 51%
mikeio\dfs_util.py 40 14 65%
mikeio\dfsu.py 815 55 93%
mikeio\dotnet.py 63 4 94%
mikeio\dutil.py 117 7 94%
mikeio\eum.py 1196 2 99%
mikeio\generic.py 126 1 99%
mikeio\helpers.py 6 0 100%
mikeio\res1d.py 202 7 97%
mikeio\spatial.py 31 11 65%
mikeio\xns11.py 199 6 97%
--------------------------------------------
TOTAL 3546 249 93%
========================================== 199 passed ==================
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file mikeio-0.5.1.tar.gz
.
File metadata
- Download URL: mikeio-0.5.1.tar.gz
- Upload date:
- Size: 4.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4759fa1c4f156582331f53546d224749b4b559d2926f6fdd18ba048288841d4 |
|
MD5 | d774634e5b8fdf5320c31577a7a5fb7d |
|
BLAKE2b-256 | 29f0df6329f63d9ab73140fef804f845c85acc7584a46b7c9f7fae031a44a7e0 |