Skip to main content

A package that works with the DHI dfs libraries to facilitate creating, writing and reading dfs, res1d and mesh files.

Project description

logo

MIKE IO: input/output of MIKE files in python

Python version Python package PyPI version

https://dhi.github.io/mikeio/

Read, write and manipulate dfs0, dfs1, dfs2, dfs3, dfsu and mesh files. Read res1d and xns11 files.

Facilitates common data processing workflows for MIKE files.

Requirements

  • Windows operating system
  • Python x64 3.6, 3.7 or 3.8
  • VC++ redistributables (already installed if you have MIKE)

More info about dependencies

Important Note!

The latest version of mikeio (v 0.5), has a lot of new functionality, but also several breaking changes to the API !! It was released on 2020-09-03.

Installation

From PyPI:

pip install mikeio

Or development version:

pip install https://github.com/DHI/mikeio/archive/master.zip

Examples

Reading data from dfs0, dfs1, dfs2, dfsu

Generic read method to read values, if you need additional features such as coordinates, use specialised classes instead e.g. Dfsu

>>> import mikeio
>>> ds = mikeio.read("random.dfs0")
>>> ds
<mikeio.DataSet>
Dimensions: (1000,)
Time: 2017-01-01 00:00:00 - 2017-07-28 03:00:00
Items:
  0:  VarFun01 <Water Level> (meter)
  1:  NotFun <Water Level> (meter)
>>> ds = mikeio.read("random.dfs1")
>>> ds
<mikeio.DataSet>
Dimensions: (100, 3)
Time: 2012-01-01 00:00:00 - 2012-01-01 00:19:48
Items:
  0:  testing water level <Water Level> (meter)

Reading dfs0 file into Pandas DataFrame

>>>  from mikeio import Dfs0
>>>  dfs = Dfs0('simple.dfs0')
>>>  ts = dfs.to_dataframe()

Write simple timeseries

>>>  from datetime import datetime
>>>  import numpy as np
>>>  from mikeio import Dfs0
>>>  data = [np.random.random([100])]
>>>  dfs = Dfs0()
>>>  dfs.write('simple.dfs0', data, start_time=datetime(2017, 1, 1), dt=60)

Write timeseries from dataframe

import pandas as pd
import mikeio
>>> df = pd.read_csv(
...         "tests/testdata/co2-mm-mlo.csv",
...         parse_dates=True,
...         index_col="Date",
...         na_values=-99.99,
...     )
>>> df.to_dfs0("mauna_loa.dfs0")

For more examples on timeseries data see this notebook

Read dfs2 data

>>>  from mikeio import Dfs2
>>> dfs = Dfs2("random.dfs2")
>>> ds = dfs.read()
>>> ds
<mikeio.DataSet>
Dimensions: (3, 100, 2)
Time: 2012-01-01 00:00:00 - 2012-01-01 00:00:24
Items:
  0:  testing water level <Water Level> (meter)

Create dfs2

For a complete example of conversion from netcdf to dfs2 see this notebook.

Another example of downloading meteorological forecast from the Global Forecasting System and converting it to a dfs2 ready to be used by a MIKE 21 model.

Read Res1D file Return Pandas DataFrame

>>>  from mikeio import res1d
>>>  # Query the discharge time series at chainage 10.1 of branch1
>>>  q1 = res1d.QueryData('Discharge', 'branch1', 10.1)
>>>  # Query all the discharge time series of branch2
>>>  q2 = res1d.QueryData('Discharge', 'branch2')
>>>  # Query all the water level time series in the file
>>>  q3 = res1d.QueryData('WaterLevel')
>>>  # Combine the queries in a list
>>>  queries = [q1, q2, q3]
>>>  # The returned ts object is a pandas DataFrame
>>>  ts = res1d.read('res1dfile.res1d', queries)

Read Xns11 file Return Pandas DataFrame

>>>  import matplotlib.pyplot as plt
>>>  from mikeio import xns11
>>>  # Query the geometry of chainage 58.68 of topoid1 at reach1
>>>  q1 = xns11.QueryData('topoid1', 'reach1', 58.68)
>>>  # Query the geometry of all chainages of topoid1 at reach2
>>>  q2 = xns11.QueryData('topoid1', 'reach2')
>>>  # Query the geometry of all chainages of topoid2
>>>  q3 = xns11.QueryData('topoid2')
>>>  # Combine the queries in a list
>>>  queries = [q1, q2, q3]
>>>  # The returned geometry object is a pandas DataFrame
>>>  geometry = xns11.read('xsections.xns11', queries)
>>>  # Plot geometry of chainage 58.68 of topoid1 at reach1
>>>  plt.plot(geometry['x topoid1 reach1 58.68'],geometry['z topoid1 reach1 58.68'])
>>>  plt.xlabel('Horizontal [meter]')
>>>  plt.ylabel('Elevation [meter]')

Geometry

Read dfsu files

>>>  import matplotlib.pyplot as plt
>>>  from mikeio import Dfsu
>>>  dfs = Dfsu("HD.dfsu")
>>>  ds = dfs.read()
>>>  idx = dfs.find_nearest_element(x=608000, y=6907000)
>>>  plt.plot(ds.time, ds.data[0][:,idx])

Timeseries

Items, units

Useful when creating a new dfs file

>>> from mikeio.eum import EUMType, EUMUnit
>>> EUMType.Temperature
<EUMType.Temperature: 100006>
>>> EUMType.Temperature.units
[degree Celsius, degree Fahrenheit, degree Kelvin]
>>> EUMUnit.degree_Kelvin
degree Kelvin

Tested

MIKE IO is tested extensively. 93% total test coverage.

See detailed test coverage report below:

----------- coverage: platform win32, python 3.7.4-final-0 -----------
Name                     Stmts   Miss  Cover
--------------------------------------------
mikeio\__init__.py          33      1    97%
mikeio\aggregator.py       104      9    91%
mikeio\dfs.py               75      5    93%
mikeio\dfs0.py             186     34    82%
mikeio\dfs1.py              75      5    93%
mikeio\dfs2.py             118     10    92%
mikeio\dfs3.py             160     78    51%
mikeio\dfs_util.py          40     14    65%
mikeio\dfsu.py             815     55    93%
mikeio\dotnet.py            63      4    94%
mikeio\dutil.py            117      7    94%
mikeio\eum.py             1196      2    99%
mikeio\generic.py          126      1    99%
mikeio\helpers.py            6      0   100%
mikeio\res1d.py            202      7    97%
mikeio\spatial.py           31     11    65%
mikeio\xns11.py            199      6    97%
--------------------------------------------
TOTAL                     3546    249    93%

========================================== 199 passed ==================

Project details


Release history Release notifications | RSS feed

This version

0.5.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mikeio-0.5.2.tar.gz (4.7 MB view details)

Uploaded Source

File details

Details for the file mikeio-0.5.2.tar.gz.

File metadata

  • Download URL: mikeio-0.5.2.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.9

File hashes

Hashes for mikeio-0.5.2.tar.gz
Algorithm Hash digest
SHA256 750689c013a37de8461d5bd87bf86f107b0f9bd9d5d5d20fa7d4869badd64284
MD5 b6b80afaef54d307198f968d6cf24996
BLAKE2b-256 1b3d16b1ca205443814cf6b51bbb2e1b7d8e531ff94423ec69eae37c93ee994d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page