Skip to main content

A package that works with the DHI dfs libraries to facilitate creating, writing and reading dfs, res1d and mesh files.

Project description

logo

MIKE IO: input/output of MIKE files in python

Python version Python package PyPI version

https://dhi.github.io/mikeio/

Read, write and manipulate dfs0, dfs1, dfs2, dfs3, dfsu and mesh files. Read res1d and xns11 files.

Facilitates common data processing workflows for MIKE files.

Blue cafe

Requirements

  • Windows operating system
  • Python x64 3.6, 3.7 or 3.8
  • VC++ redistributables (already installed if you have MIKE)

More info about dependencies

Where can I get help?

Installation

From PyPI:

pip install mikeio

Or development version:

pip install https://github.com/DHI/mikeio/archive/master.zip

Examples

Reading data from dfs0, dfs1, dfs2, dfsu

Generic read method to read values, if you need additional features such as coordinates, use specialised classes instead e.g. Dfsu

>>> import mikeio
>>> ds = mikeio.read("random.dfs0")
>>> ds
<mikeio.DataSet>
Dimensions: (1000,)
Time: 2017-01-01 00:00:00 - 2017-07-28 03:00:00
Items:
  0:  VarFun01 <Water Level> (meter)
  1:  NotFun <Water Level> (meter)
>>> ds = mikeio.read("random.dfs1")
>>> ds
<mikeio.DataSet>
Dimensions: (100, 3)
Time: 2012-01-01 00:00:00 - 2012-01-01 00:19:48
Items:
  0:  testing water level <Water Level> (meter)

Reading dfs0 file into Pandas DataFrame

>>>  from mikeio import Dfs0
>>>  dfs = Dfs0('simple.dfs0')
>>>  ts = dfs.to_dataframe()

Write simple timeseries

>>>  from datetime import datetime
>>>  import numpy as np
>>>  from mikeio import Dfs0
>>>  data = [np.random.random([100])]
>>>  dfs = Dfs0()
>>>  dfs.write('simple.dfs0', data, start_time=datetime(2017, 1, 1), dt=60)

Write timeseries from dataframe

import pandas as pd
import mikeio
>>> df = pd.read_csv(
...         "tests/testdata/co2-mm-mlo.csv",
...         parse_dates=True,
...         index_col="Date",
...         na_values=-99.99,
...     )
>>> df.to_dfs0("mauna_loa.dfs0")

For more examples on timeseries data see this notebook

Read dfs2 data

>>>  from mikeio import Dfs2
>>> dfs = Dfs2("random.dfs2")
>>> ds = dfs.read()
>>> ds
<mikeio.DataSet>
Dimensions: (3, 100, 2)
Time: 2012-01-01 00:00:00 - 2012-01-01 00:00:24
Items:
  0:  testing water level <Water Level> (meter)

Create dfs2

For a complete example of conversion from netcdf to dfs2 see this notebook.

Another example of downloading meteorological forecast from the Global Forecasting System and converting it to a dfs2 ready to be used by a MIKE 21 model.

Read Res1D file Return Pandas DataFrame

>>>  from mikeio import res1d
>>>  # Query the discharge time series at chainage 10.1 of branch1
>>>  q1 = res1d.QueryData('Discharge', 'branch1', 10.1)
>>>  # Query all the discharge time series of branch2
>>>  q2 = res1d.QueryData('Discharge', 'branch2')
>>>  # Query all the water level time series in the file
>>>  q3 = res1d.QueryData('WaterLevel')
>>>  # Combine the queries in a list
>>>  queries = [q1, q2, q3]
>>>  # The returned ts object is a pandas DataFrame
>>>  ts = res1d.read('res1dfile.res1d', queries)

For more examples on Res1D see this notebook

Read Xns11 file Return Pandas DataFrame

>>>  import matplotlib.pyplot as plt
>>>  from mikeio import xns11
>>>  # Query the geometry of chainage 58.68 of topoid1 at reach1
>>>  q1 = xns11.QueryData('topoid1', 'reach1', 58.68)
>>>  # Query the geometry of all chainages of topoid1 at reach2
>>>  q2 = xns11.QueryData('topoid1', 'reach2')
>>>  # Query the geometry of all chainages of topoid2
>>>  q3 = xns11.QueryData('topoid2')
>>>  # Combine the queries in a list
>>>  queries = [q1, q2, q3]
>>>  # The returned geometry object is a pandas DataFrame
>>>  geometry = xns11.read('xsections.xns11', queries)
>>>  # Plot geometry of chainage 58.68 of topoid1 at reach1
>>>  plt.plot(geometry['x topoid1 reach1 58.68'],geometry['z topoid1 reach1 58.68'])
>>>  plt.xlabel('Horizontal [meter]')
>>>  plt.ylabel('Elevation [meter]')

Geometry

Read dfsu files

>>>  import matplotlib.pyplot as plt
>>>  from mikeio import Dfsu
>>>  dfs = Dfsu("HD.dfsu")
>>>  ds = dfs.read()
>>>  idx = dfs.find_nearest_element(x=608000, y=6907000)
>>>  plt.plot(ds.time, ds.data[0][:,idx])

Timeseries

>>>  from mikeio import Mesh
>>>  msh = Mesh("FakeLake.dfsu")
>>>  msh.plot()

Mesh

For more examples on working with dfsu and mesh see these notebooks:

Items, units

Useful when creating a new dfs file

>>> from mikeio.eum import EUMType, EUMUnit
>>> EUMType.Temperature
<EUMType.Temperature: 100006>
>>> EUMType.Temperature.units
[degree Celsius, degree Fahrenheit, degree Kelvin]
>>> EUMUnit.degree_Kelvin
degree Kelvin

Tested

MIKE IO is tested extensively. 93% total test coverage.

See detailed test coverage report below:

----------- coverage: platform win32, python 3.7.4-final-0 -----------
Name                     Stmts   Miss  Cover
--------------------------------------------
mikeio\__init__.py          33      1    97%
mikeio\aggregator.py       104      9    91%
mikeio\dfs.py               75      5    93%
mikeio\dfs0.py             186     34    82%
mikeio\dfs1.py              75      5    93%
mikeio\dfs2.py             118     10    92%
mikeio\dfs3.py             160     78    51%
mikeio\dfs_util.py          40     14    65%
mikeio\dfsu.py             815     55    93%
mikeio\dotnet.py            63      4    94%
mikeio\dutil.py            117      7    94%
mikeio\eum.py             1196      2    99%
mikeio\generic.py          126      1    99%
mikeio\helpers.py            6      0   100%
mikeio\res1d.py            202      7    97%
mikeio\spatial.py           31     11    65%
mikeio\xns11.py            199      6    97%
--------------------------------------------
TOTAL                     3546    249    93%

========================================== 199 passed ==================

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mikeio-0.5.3.tar.gz (4.7 MB view details)

Uploaded Source

File details

Details for the file mikeio-0.5.3.tar.gz.

File metadata

  • Download URL: mikeio-0.5.3.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.7.9

File hashes

Hashes for mikeio-0.5.3.tar.gz
Algorithm Hash digest
SHA256 5e71b648c73bb82fdf73641ac5272fef7eab0ca637b53631d28e22a66e04617d
MD5 6acbe6b7015a4916e072134b8b85c12d
BLAKE2b-256 e8bf66e4199eee2db7ab4e11ab293419053f6a4622bafca3dd432dd43b132431

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page