Skip to main content

A package that uses the DHI dfs libraries to create, write and read dfs and mesh files.

Project description

logo

MIKE IO: input/output of MIKE files in python

Python version Python package PyPI version

https://dhi.github.io/mikeio/

Read, write and manipulate dfs0, dfs1, dfs2, dfs3, dfsu and mesh files.

Facilitates common data processing workflows for MIKE files.

For res1d and xns11 files use the related package MIKE IO 1D

Upcoming release: MIKE IO 1.0

MIKE IO 1.0 is planned to be released in May 2022 and it will have a lot of benefits to make working with dfs files easier, but it also requires some changes to your existing code. More details in the discussion page.

code example

Important changes

  • New class mikeio.DataArray which will be the main class to interact with, having these properties and methods
    • item info
    • geometry (grid coordinates)
    • methods for plotting
    • methods for aggreation in time and space
  • Indexing into a dataset e.g. ds.Surface_elevation to get a specific item, will not return a numpy array, but a mikeio.DataArray

Requirements

  • Windows or Linux operating system
  • Python x64 3.7 - 3.10
  • (Windows) VC++ redistributables (already installed if you have MIKE)

More info about dependencies

Where can I get help?

Installation

From PyPI:

pip install mikeio

Or development version:

pip install https://github.com/DHI/mikeio/archive/main.zip

Examples

Reading data from dfs0, dfs1, dfs2, dfsu

Generic read method to read values, if you need additional features such as coordinates, use specialised classes instead e.g. Dfsu

>>> import mikeio
>>> ds = mikeio.read("random.dfs0")
>>> ds
<mikeio.Dataset>
Dimensions: (1000,)
Time: 2017-01-01 00:00:00 - 2017-07-28 03:00:00
Items:
  0:  VarFun01 <Water Level> (meter)
  1:  NotFun <Water Level> (meter)
>>> ds = mikeio.read("random.dfs1")
>>> ds
<mikeio.Dataset>
Dimensions: (100, 3)
Time: 2012-01-01 00:00:00 - 2012-01-01 00:19:48
Items:
  0:  testing water level <Water Level> (meter)

Reading dfs0 file into Pandas DataFrame

>>>  ds = mikeio.read('simple.dfs0')
>>>  ts = ds.to_dataframe()

Write timeseries from dataframe

import pandas as pd
import mikeio
>>> df = pd.read_csv(
...         "tests/testdata/co2-mm-mlo.csv",
...         parse_dates=True,
...         index_col="Date",
...         na_values=-99.99,
...     )
>>> df.to_dfs0("mauna_loa.dfs0")

For more examples on timeseries data see this notebook

Read dfs2 data

>>> ds = mikeio.read("gebco_sound.dfs2") 
>>> ds
<mikeio.Dataset>
Dimensions: (time:1, y:264, x:216)
Time: 2020-05-15 11:04:52 (time-invariant)
Items:
  0:  Elevation <Total Water Depth> (meter)

Create dfs2

For a complete example of conversion from netcdf to dfs2 see this notebook.

Another example of downloading meteorological forecast from the Global Forecasting System and converting it to a dfs2 ready to be used by a MIKE 21 model.

Read dfsu files

>>>  import matplotlib.pyplot as plt
>>>  ds = mikeio.read("HD.dfsu")
>>>  ds_stn = ds.sel(x=608000, y=6907000)
>>>  ds_stn.plot()
>>>  from mikeio import Mesh
>>>  msh = Mesh("FakeLake.dfsu")
>>>  msh.plot()

Mesh

For more examples on working with dfsu and mesh see these notebooks:

Pfs

Pfs is the format used for MIKE setup files (.m21fm, .m3fm, .sw etc.).

There is experimental support for reading pfs files, but the API is likely to change.

pfs

Items, units

Useful when creating a new dfs file

>>> from mikeio.eum import EUMType, EUMUnit
>>> EUMType.Temperature
<EUMType.Temperature: 100006>
>>> EUMType.Temperature.units
[degree Celsius, degree Fahrenheit, degree Kelvin]
>>> EUMUnit.degree_Kelvin
degree Kelvin

Tested

MIKE IO is tested extensively. 95% total test coverage.

See detailed test coverage report below:

---------- coverage: platform linux, python 3.10.2-final-0 -----------
Name                              Stmts   Miss  Cover
-----------------------------------------------------
mikeio/__init__.py                   38      3    92%
mikeio/aggregator.py                 98      9    91%
mikeio/base.py                       26      5    81%
mikeio/custom_exceptions.py          25      6    76%
mikeio/data_utils.py                111     24    78%
mikeio/dataarray.py                 686    101    85%
mikeio/dataset.py                   695     87    87%
mikeio/dfs0.py                      278     26    91%
mikeio/dfs1.py                       61      6    90%
mikeio/dfs2.py                      186     37    80%
mikeio/dfs3.py                      202     77    62%
mikeio/dfs.py                       269     21    92%
mikeio/dfsu.py                      735     56    92%
mikeio/dfsu_factory.py               41      2    95%
mikeio/dfsu_layered.py              142     19    87%
mikeio/dfsu_spectral.py              97      8    92%
mikeio/dfsutil.py                    89      5    94%
mikeio/eum.py                      1297      4    99%
mikeio/generic.py                   399      8    98%
mikeio/helpers.py                    16      5    69%
mikeio/interpolation.py              63      2    97%
mikeio/pfs.py                        95      0   100%
mikeio/spatial/FM_geometry.py       867     80    91%
mikeio/spatial/FM_utils.py          231     19    92%
mikeio/spatial/__init__.py            4      0   100%
mikeio/spatial/crs.py                50     25    50%
mikeio/spatial/geometry.py           88     34    61%
mikeio/spatial/grid_geometry.py     334     16    95%
mikeio/spatial/spatial.py           278    181    35%
mikeio/xyz.py                        12      0   100%
-----------------------------------------------------
TOTAL                              7513    866    88%

================ 454 passed in 41.76s =================

Cloud enabled

From MIKE IO v.0.7 it is now possible to run MIKE IO on Linux-based Cloud computing, e.g. Google Colab.

Colab

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mikeio-1.0a1.tar.gz (138.0 kB view details)

Uploaded Source

Built Distribution

mikeio-1.0a1-py3-none-any.whl (162.7 kB view details)

Uploaded Python 3

File details

Details for the file mikeio-1.0a1.tar.gz.

File metadata

  • Download URL: mikeio-1.0a1.tar.gz
  • Upload date:
  • Size: 138.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.9

File hashes

Hashes for mikeio-1.0a1.tar.gz
Algorithm Hash digest
SHA256 3e6ca0cb83370ba355f98f38d8c062e5db45fa5ea2a7b2598133d5e9d45fac28
MD5 531008a3022df3e4fffc4b6841758d50
BLAKE2b-256 8b318da53d820dff92ac716ca1b38a7dd0f5682b3558eb74a83e284637ed2114

See more details on using hashes here.

File details

Details for the file mikeio-1.0a1-py3-none-any.whl.

File metadata

  • Download URL: mikeio-1.0a1-py3-none-any.whl
  • Upload date:
  • Size: 162.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.9

File hashes

Hashes for mikeio-1.0a1-py3-none-any.whl
Algorithm Hash digest
SHA256 955e66e9770018a05c302b5a3446feb5d4d7463886afcb8162685983c1dcab81
MD5 45acb99ae75bd09473e4c6e12ed3772c
BLAKE2b-256 e6218126dd690287b4d164e1e5a0561a58edf3d96d79132b89040e5e3145d12b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page