Skip to main content

A package that uses the DHI dfs libraries to create, write and read dfs and mesh files.

Project description

logo

MIKE IO: input/output of MIKE files in Python

Python version Full test PyPI version OS

Read, write and manipulate dfs0, dfs1, dfs2, dfs3, dfsu and mesh files.

MIKE IO facilitates common data processing workflows for MIKE files in Python.

MIKEIO. Read, write and analyze MIKE dfs files with Python on Vimeo

Requirements

  • Windows or Linux operating system
  • Python x64 3.8 - 3.12
  • (Windows) VC++ redistributables (already installed if you have MIKE)

More info about dependencies

Installation

From PyPI:

pip install mikeio

Or development version:

pip install https://github.com/DHI/mikeio/archive/main.zip

:warning: Don't use conda to install MIKE IO!, the version on conda is outdated.

Getting started

The material from the last Academy by DHI course is available here: Getting started with Dfs files in Python using MIKE IO

Where can I get help?

Tested

MIKE IO is tested extensively.

See detailed test coverage report below:

---------- coverage: platform linux, python 3.12.4-final-0 -----------
Name                                      Stmts   Miss  Cover
-------------------------------------------------------------
mikeio/__init__.py                           31      3    90%
mikeio/_interpolation.py                     68      6    91%
mikeio/_spectral.py                          97      7    93%
mikeio/_time.py                              29      1    97%
mikeio/_track.py                            103     14    86%
mikeio/dataset/__init__.py                    3      0   100%
mikeio/dataset/_data_plot.py                358     38    89%
mikeio/dataset/_data_utils.py                20      0   100%
mikeio/dataset/_dataarray.py                730     52    93%
mikeio/dataset/_dataset.py                  734     57    92%
mikeio/dfs/__init__.py                        5      0   100%
mikeio/dfs/_dfs0.py                         198     13    93%
mikeio/dfs/_dfs1.py                          58      2    97%
mikeio/dfs/_dfs2.py                         132      3    98%
mikeio/dfs/_dfs3.py                         147      9    94%
mikeio/dfs/_dfs.py                          290     18    94%
mikeio/dfsu/__init__.py                       6      0   100%
mikeio/dfsu/_common.py                       36      1    97%
mikeio/dfsu/_dfsu.py                        223      7    97%
mikeio/dfsu/_factory.py                      20      1    95%
mikeio/dfsu/_layered.py                     190      7    96%
mikeio/dfsu/_mesh.py                         54      8    85%
mikeio/dfsu/_spectral.py                    214     36    83%
mikeio/eum/__init__.py                        2      0   100%
mikeio/eum/_eum.py                         1334      9    99%
mikeio/exceptions.py                         24      4    83%
mikeio/generic.py                           451     17    96%
mikeio/pfs/__init__.py                        8      0   100%
mikeio/pfs/_pfsdocument.py                  248     13    95%
mikeio/pfs/_pfssection.py                   223      9    96%
mikeio/spatial/_FM_geometry.py              521     24    95%
mikeio/spatial/_FM_geometry_layered.py      415     30    93%
mikeio/spatial/_FM_geometry_spectral.py      94      9    90%
mikeio/spatial/_FM_utils.py                 275     22    92%
mikeio/spatial/__init__.py                    6      0   100%
mikeio/spatial/_geometry.py                  78      8    90%
mikeio/spatial/_grid_geometry.py            639     45    93%
mikeio/spatial/_utils.py                     39      0   100%
mikeio/spatial/crs.py                        51      5    90%
mikeio/xyz.py                                14      0   100%
-------------------------------------------------------------
TOTAL                                      8168    478    94%

Cloud enabled

It is possible to run MIKE IO in your favorite cloud notebook environment e.g. Deepnote, Google Colab, etc...

DeepNote

Colab

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mikeio-2.0.0.tar.gz (7.8 MB view details)

Uploaded Source

Built Distribution

mikeio-2.0.0-py3-none-any.whl (150.5 kB view details)

Uploaded Python 3

File details

Details for the file mikeio-2.0.0.tar.gz.

File metadata

  • Download URL: mikeio-2.0.0.tar.gz
  • Upload date:
  • Size: 7.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mikeio-2.0.0.tar.gz
Algorithm Hash digest
SHA256 4989168cd18309493cdc2c709fcd59f96a473b9027bddb45adfb7a8654836778
MD5 66fd26366084a7e0e32efd35100533e9
BLAKE2b-256 2225cb9bedcf039eb6679b21090d774f68a47d29d3fb93f924dbbda2ef58efc5

See more details on using hashes here.

File details

Details for the file mikeio-2.0.0-py3-none-any.whl.

File metadata

  • Download URL: mikeio-2.0.0-py3-none-any.whl
  • Upload date:
  • Size: 150.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mikeio-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a16f1a7e4c709c224b990b2e08ee050eab961b7971dec59c0d5cc81c385d09e6
MD5 915950dfd96d8ec40f33fc9e78cf92b3
BLAKE2b-256 d8746256adee331eb6e384410707b2a16c3fdc253cdabfc03c117ea4e74c3bb7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page