Skip to main content

A package that uses the DHI dfs libraries to create, write and read dfs and mesh files.

Project description

logo

MIKE IO: input/output of MIKE files in Python

Python version Full test PyPI version OS

Read, write and manipulate dfs0, dfs1, dfs2, dfs3, dfsu and mesh files.

MIKE IO facilitates common data processing workflows for MIKE files in Python.

MIKEIO. Read, write and analyze MIKE dfs files with Python on Vimeo

Requirements

  • Windows or Linux operating system
  • Python x64 3.9 - 3.12
  • (Windows) VC++ redistributables (already installed if you have MIKE)

Installation

From PyPI:

pip install mikeio

Or development version:

pip install https://github.com/DHI/mikeio/archive/main.zip

:warning: Don't use conda to install MIKE IO!, the version on conda is outdated.

Getting started

The material from the last Academy by DHI course is available here: Getting started with Dfs files in Python using MIKE IO

Where can I get help?

Tested

MIKE IO is tested extensively.

See detailed test coverage report below:

---------- coverage: platform linux, python 3.12.4-final-0 -----------
Name                                      Stmts   Miss  Cover
-------------------------------------------------------------
mikeio/__init__.py                           31      3    90%
mikeio/_interpolation.py                     68      6    91%
mikeio/_spectral.py                          97      7    93%
mikeio/_time.py                              29      1    97%
mikeio/_track.py                            103     14    86%
mikeio/dataset/__init__.py                    3      0   100%
mikeio/dataset/_data_plot.py                358     38    89%
mikeio/dataset/_data_utils.py                20      0   100%
mikeio/dataset/_dataarray.py                730     52    93%
mikeio/dataset/_dataset.py                  734     57    92%
mikeio/dfs/__init__.py                        5      0   100%
mikeio/dfs/_dfs0.py                         198     13    93%
mikeio/dfs/_dfs1.py                          58      2    97%
mikeio/dfs/_dfs2.py                         132      3    98%
mikeio/dfs/_dfs3.py                         147      9    94%
mikeio/dfs/_dfs.py                          290     18    94%
mikeio/dfsu/__init__.py                       6      0   100%
mikeio/dfsu/_common.py                       36      1    97%
mikeio/dfsu/_dfsu.py                        223      7    97%
mikeio/dfsu/_factory.py                      20      1    95%
mikeio/dfsu/_layered.py                     190      7    96%
mikeio/dfsu/_mesh.py                         54      8    85%
mikeio/dfsu/_spectral.py                    214     36    83%
mikeio/eum/__init__.py                        2      0   100%
mikeio/eum/_eum.py                         1334      9    99%
mikeio/exceptions.py                         24      4    83%
mikeio/generic.py                           451     17    96%
mikeio/pfs/__init__.py                        8      0   100%
mikeio/pfs/_pfsdocument.py                  248     13    95%
mikeio/pfs/_pfssection.py                   223      9    96%
mikeio/spatial/_FM_geometry.py              521     24    95%
mikeio/spatial/_FM_geometry_layered.py      415     30    93%
mikeio/spatial/_FM_geometry_spectral.py      94      9    90%
mikeio/spatial/_FM_utils.py                 275     22    92%
mikeio/spatial/__init__.py                    6      0   100%
mikeio/spatial/_geometry.py                  78      8    90%
mikeio/spatial/_grid_geometry.py            639     45    93%
mikeio/spatial/_utils.py                     39      0   100%
mikeio/spatial/crs.py                        51      5    90%
mikeio/xyz.py                                14      0   100%
-------------------------------------------------------------
TOTAL                                      8168    478    94%

Cloud enabled

It is possible to run MIKE IO in your favorite cloud notebook environment e.g. Deepnote, Google Colab, etc...

DeepNote

Colab

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mikeio-2.1.1.tar.gz (124.7 kB view details)

Uploaded Source

Built Distribution

mikeio-2.1.1-py3-none-any.whl (150.6 kB view details)

Uploaded Python 3

File details

Details for the file mikeio-2.1.1.tar.gz.

File metadata

  • Download URL: mikeio-2.1.1.tar.gz
  • Upload date:
  • Size: 124.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for mikeio-2.1.1.tar.gz
Algorithm Hash digest
SHA256 f39abbff79befbfdd9000e7b92267e3bfc8b64964c5099afa8cac0900f7cb66b
MD5 029189eae34f4519ecdf82942f5ab9fb
BLAKE2b-256 90fa6a5e8ee4676b3eb9d5b1f515f6a9000eb6f5355fcdd9b35929303cf6eecb

See more details on using hashes here.

File details

Details for the file mikeio-2.1.1-py3-none-any.whl.

File metadata

  • Download URL: mikeio-2.1.1-py3-none-any.whl
  • Upload date:
  • Size: 150.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for mikeio-2.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 67e10d9f39f4a3f22ecd9f3a122f7a510e73decce67e54df11a1df438c748d6a
MD5 d75c3d9e7b1c4e67c501b043b0df0540
BLAKE2b-256 cd8ff4929a35425ba70902a2a7607c5d1a526c2d753d66996578dafd550065bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page