Skip to main content

milwrap - multiple instane meta-learner that can use any supervised-learning algorithms.

Project description

milwrap

Build Status GitHub issues Open In Colab

Python package for multiple instance learning (MIL). This wraps single instance learning algorithms so that they can be fitted to data for MIL.

Features

  • support count-based multiple instance assumptions (see wikipedia)
  • support multi-class setting
  • support scikit-learn algorithms (such as RandomForestClassifier, SVC, LogisticRegression)

Installation

pip install milwrap

Usage

# Prepare single-instance supervised-learning algorithm
# Note: only supports models with predict_proba() method.
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()

# Wrap it with MilCountBasedMultiClassLearner
from milwrap import MilCountBasedMultiClassLearner 
mil_learner = MilCountBasedMultiClassLearner(clf)

# Prepare follwing dataset
#
# - bags ... list of np.ndarray
#            (num_instance_in_the_bag * num_features)
# - lower_threshold ... np.ndarray (num_bags * num_classes)
# - upper_threshold ... np.ndarray (num_bags * num_classes)
#
# bags[i_bag] contains not less than lower_thrshold[i_bag, i_class]
# i_class instances.

# run multiple instance learning
clf_mil, y_mil = learner.fit(
    bags,
    lower_threshold,
    upper_threshold,
    n_classes,
    max_iter=10)

# after multiple instance learning,
# you can predict instance class
clf_mil.predict([instance_feature])

See tests/test_countbased.py for an example of a fully working test data generation process.

License

milwrap is available under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

milwrap-0.1.3.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

milwrap-0.1.3-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file milwrap-0.1.3.tar.gz.

File metadata

  • Download URL: milwrap-0.1.3.tar.gz
  • Upload date:
  • Size: 4.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.7

File hashes

Hashes for milwrap-0.1.3.tar.gz
Algorithm Hash digest
SHA256 7d0fbbe4c728a0186668a0bf7de7dabcd108a720c02d440a6931d7ac7ff4e5b2
MD5 03041b037ef4aaac79ed20482c3ac566
BLAKE2b-256 a43fe5c0c8e349c168c4371ad5e032a8d6da623971b1bd23a3fdb6e1ad85d641

See more details on using hashes here.

File details

Details for the file milwrap-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: milwrap-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 5.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.7

File hashes

Hashes for milwrap-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 aca3cdd9ee433e7a9ae1331389739cb755a3c4709cba0466fe6924dffb9a51b9
MD5 c5da74578e0ef95e85a458f3201489bc
BLAKE2b-256 5bafb136e4941331edde8be3bef0343d334b9140e5010910a303f21ada13f4a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page