A package for anomaly detection using Isolation Forest for Wazuh Alerts
Project description
Mimizuku
Mimizuku is a Python package for anomaly detection using Isolation Forest. It is designed to process log files and detect anomalies based on a variety of features.
Installation
pip install .
Usage
from mimizuku import Mimizuku
# Initialize the model
model = Mimizuku(n_estimators=500)
# Train the model with a log file or DataFrame
model.fit("./training.json")
# Save the trained model
model.save_model("./model.pkl")
# Load the model and use it for prediction
loaded_model = Mimizuku.load_model("./model.pkl")
anomalies_df = loaded_model.predict("./test.json")
# Display detected anomalies
print(anomalies_df)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mimizuku-0.2.15.tar.gz
(3.2 kB
view hashes)
Built Distribution
Close
Hashes for mimizuku-0.2.15-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0fa78949f925f2d7e933f6ea3f9a4bb0dd652a99de6a9e7d45b3985fea77a02 |
|
MD5 | af66b1bb1402b8dc9448f2633d2e0cb6 |
|
BLAKE2b-256 | 0b7489ba14d35cac0f37a63b1fcfd49c039d6c426d616362aa26a309634fa785 |