A package for anomaly detection using Isolation Forest for Wazuh Alerts
Project description
Mimizuku
Mimizuku is a Python package for anomaly detection using Isolation Forest. It is designed to process log files and detect anomalies based on a variety of features.
Installation
pip install .
Usage
from mimizuku import Mimizuku
# Initialize the model
model = Mimizuku(n_estimators=500)
# Train the model with a log file or DataFrame
model.fit("./training.json")
# Save the trained model
model.save_model("./model.pkl")
# Load the model and use it for prediction
loaded_model = Mimizuku.load_model("./model.pkl")
anomalies_df = loaded_model.predict("./test.json")
# Display detected anomalies
print(anomalies_df)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mimizuku-0.2.18.tar.gz
(3.2 kB
view hashes)
Built Distribution
Close
Hashes for mimizuku-0.2.18-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d231c43bb4781b78d186d57b4da44395d56ddf19a460bdee27f45470b8c8634 |
|
MD5 | 20877d267150e908eeb0d95e930d131f |
|
BLAKE2b-256 | 88e9280cd1a7f32f3cca441bac454f84be00b337042faa0f5e5fad1305fb9861 |