A package for anomaly detection using Isolation Forest for Wazuh Alerts
Project description
Mimizuku
Mimizuku is a Python package for anomaly detection using Isolation Forest. It is designed to process log files and detect anomalies based on a variety of features.
Installation
pip install .
Usage
from mimizuku import Mimizuku
# Initialize the model
model = Mimizuku(n_estimators=500)
# Train the model with a log file or DataFrame
model.fit("./training.json")
# Save the trained model
model.save_model("./model.pkl")
# Load the model and use it for prediction
loaded_model = Mimizuku.load_model("./model.pkl")
anomalies_df = loaded_model.predict("./test.json")
# Display detected anomalies
print(anomalies_df)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mimizuku-0.2.29.tar.gz
(3.6 kB
view hashes)
Built Distribution
Close
Hashes for mimizuku-0.2.29-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b620194f8f64e921f7a1c4e2736303f7bfaa131a69c9038fac194bf9b8ec43b6 |
|
MD5 | 1afe17df01ccec4753e126b5ae69a520 |
|
BLAKE2b-256 | a6d366ccf881e503567c789753b1dcf1731aa1cf292564adabed6f6cd88b1720 |