minGRU
Project description
minGRU
Implementation of the proposed minGRU in Pytorch, only the log-space numerically stable version.
Install
$ pip install minGRU-pytorch
Usage
import torch
from minGRU_pytorch import minGRU
min_gru = minGRU(512)
x = torch.randn(2, 1024, 512)
out = min_gru(x)
assert x.shape == out.shape
Test
enwik8
$ python train.py
Citations
@inproceedings{Feng2024WereRA,
title = {Were RNNs All We Needed?},
author = {Leo Feng and Frederick Tung and Mohamed Osama Ahmed and Yoshua Bengio and Hossein Hajimirsadegh},
year = {2024},
url = {https://api.semanticscholar.org/CorpusID:273025630}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mingru_pytorch-0.0.10.tar.gz
(36.6 MB
view details)
Built Distribution
File details
Details for the file mingru_pytorch-0.0.10.tar.gz
.
File metadata
- Download URL: mingru_pytorch-0.0.10.tar.gz
- Upload date:
- Size: 36.6 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c25b2ae8155e51700098edc57092550e1e9d67b47232ccb1683d8b7882fda4b |
|
MD5 | b357bb5afded9f1c73f950e941dd6e94 |
|
BLAKE2b-256 | 8fdd0a83da31a3497d0915f6a5033ddf81f2a86b3e47268a3e03dae22b4e08cf |
File details
Details for the file mingru_pytorch-0.0.10-py3-none-any.whl
.
File metadata
- Download URL: mingru_pytorch-0.0.10-py3-none-any.whl
- Upload date:
- Size: 5.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d48e1d7ffb0ae123ba8a12899bf1b2727546bb6ff54d08b8b36ef6ed34d9e273 |
|
MD5 | c9d83999434ea95a461f9530eb9d7af5 |
|
BLAKE2b-256 | 81aede84cf920c80770041918eb761993200291ad5418a290cbdb876c8b16c5a |