Skip to main content

The MindAffect BCI python SDK

Project description

This repository contains the python SDK code for the Brain Computer Interface (BCI) developed by the company [Mindaffect](

File Structure

This repository is organized roughly as follows:

  • mindaffectBCI - contains the python package containing the mindaffectBCI SDK. Important modules within this package are:
    • - This module contains the main API for developing User Interfaces with BCI control
    • - This module contains the application level APIs for interacting with the MindAffect Decoder.
    • - This module contains the low-level networking functions for communicating with the MindAffect Decoder - which is normally a separate computer running the eeg analysis software.
    • – This module contains the low-level functions for loading and codebooks - which define how the presented stimuli will look.
  • codebooks - Contains the most common noisetagging codebooks as text files
  • examples - contains python based examples for Presentation and Output parts of the BCI. Important sub-directories
    • output - Example output modules. An output module translates BCI based selections into actions.
    • presentation - Example presentation modules. A presentation module, presents the BCI stimulus to the user, and is normally the main UI.

Installing mindaffectBCI

That’s easy:

pip3 install mindaffectBCI

Testing the mindaffectBCI SDK

This SDK provides the functionality needed to add Brain Controls to your own applications. However, it does not provide the actual brain measuring hardware (i.e. EEG) or the brain-signal decoding algorithms.

In order to allow you to develop and test your Brain Controlled applications without connecting to a real mindaffect Decoder, we provide a so called “fake recogniser”. This fake recogniser simulates the operation of the true mindaffect decoder to allow easy development and debugging. Before starting with the example output and presentation modules. You can download the fakerecogniser from our [github page](

You should start this fake recogniser by running, either


if running on windows, or


if running on linux/macOS

If successfull, running these scripts should open a terminal window which shows the messages recieved/sent from your example application.

Note: The fakerecogniser is written in [java](, so you will need a JVM with version >8 for it to run. If needed download from [here](

Quick Installation Test

You can run a quick test if the installation is correct by running::
python3 -m mindaffectBCI.noisetag

Essentially, this run the SDK test code which pretends to run a full BCI sequence, with decoder discovery, calibration and prediction. If you have the fakerecognise running then this should do this in a terminal and generate a lot of text saying things like: cal 1/10.

Quick BCI Test

If you have installed [pyglet](, e.g. using pip3 install pyglet, then you can also try some more advanced fully BCI exmaples with stimulation. For a simple letter matrix test run::
python3 -m mindaffectBCI.examples.presentation.selectionMatrix

Simple output module

An output module listens for selections from the mindaffect decoder and acts on them to create some output. Here we show how to make a simple output module which print’s “Hello World” when the presentation ‘button’ with ID=1 is selected.

Note: Note: this should be in a separate file from the output example above. You can find the complete code for this minimal-presentation on our [github](

# Import the utopia2output module
from mindaffectBCI.utopia2output import Utopia2Output

Now we can create an utopia2output object and connect it to a running mindaffect BCI decoder.


(Note: For this to succeed you must have a real or simulated mindaffectBCI decoder running somewhere on your network.)

Now we define a function to print hello-world

def helloworld(objID):
   print("hello world")

And connect it so it is run when the object with ID=1 is selected.

# set the objectID2Action dictionary to use our helloworld function if 1 is selected
u2o.objectID2Action={ 1:helloworld }

Finally, run the main loop

For more complex output examples, and examples for controlling a [lego boost]( robot, or a [philips Hue]( controllable light, look in the examplesoutput directory.

Simple presention module

Presentation is inherently more complex that output as we must display the correct stimuli to the user with precise timing and communicate this timing information to the mindaffect decoder. Further, for the BCI operation we need to operation in (at least),

  • _calibration_ mode where we cue the user where to attend to obtain correctly labelled brain data to train the machine learning algorithms in the decoder and
  • _prediction_ mode where the user actually uses the BCI to make selections.

The noisetag module mindaffectBCI SDK provides a number of tools to hide this complexity from the application developers. Using the most extreeem of these all the application developer has to do is provide a function to _draw_ the display as instructed by the noisetag module.

Note: this should be in a separate file from the output example above. You can find the complete code for this minimal-presentation on our [github](

To use this. Import the module and creat the noisetag object.

from mindaffectBCI.noisetag import Noisetag
nt = Noisetag()

Note: Creation of the Noisetag object will also implictly create a connection to any running mindaffectBCI decoder - so you should have one running somewhere on your network.

Write a function to draw the screen. Here we will use the python gaming librar [pyglet]( to draw 2 squares on the screen, with the given colors.

import pyglet
# make a default window, with fixed size for simplicty

# define a simple 2-squares drawing function
def draw_squares(col1,col2):
  # draw square 1: @100,190 , width=100, height=100
  x=100; y=190; w=100; h=100;,,
  # draw square 2: @440,100

Now we write a function which, 1) asks the noisetag framework how the selectable squares should look, 2) updates the noisetag framework with information about how the display was updated.

# dictionary mapping from stimulus-state to colors
state2color={0:(.2,.2,.2), # off=grey
             1:(1,1,1),    # on=white
             2:(0,1,0),    # cue=green
                 3:(0,0,1)}    # feedback=blue
def draw(dt):
  # send info on the *previous* stimulus state.
  # N.B. we do it here as draw is called as soon as the vsync happens
  # update and get the new stimulus state to display
  # N.B. update raises StopIteration when noisetag sequence has finished
  try :
  except StopIteration : # terminate app when noisetag is done
  # draw the display with the instructed colors
  # draw the display with the instructed colors
  if stimulus_state :

As a final step we can attached a selection callback which will be called whenever a selection is made by the BCI.

# define a trival selection handler
def selectionHandler(objID):
  print("Selected: %d"%(objID))

Finally, we tell the noisetag module to run a complete BCI ‘experiment’ with calibration and feedback mode, and start the pyglet main loop.

# tell the noisetag framework to run a full : calibrate->prediction sequence
# run the pyglet main loop

This will then run a full BCI with 10 cued calibration trials, and uncued prediction trials. During the calibration trials a square turning green shows this is the cued direction. During the prediction phase a square turning blue shows the selection by the BCI.

For more complex presentation examples, including a full 6x6 character typing keyboard, and a color-wheel for controlling a [philips Hue light]( see the examples/presentation directory.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for mindaffectBCI, version 0.9.6
Filename, size File type Python version Upload date Hashes
Filename, size mindaffectBCI-0.9.6-py3-none-any.whl (67.3 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size mindaffectBCI-0.9.6.tar.gz (47.9 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page