Skip to main content

MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.

Project description

MindSpore Logo

PyPI - Python Version PyPI Downloads DockerHub LICENSE Slack PRs Welcome

查看中文

What Is MindSpore

MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios. MindSpore is designed to provide development experience with friendly design and efficient execution for the data scientists and algorithmic engineers, native support for Ascend AI processor, and software hardware co-optimization. At the meantime MindSpore as a global AI open source community, aims to further advance the development and enrichment of the AI software/hardware application ecosystem.

MindSpore Architecture

For more details please check out our Architecture Guide.

Automatic Differentiation

Currently, there are two automatic differentiation techniques in mainstream deep learning frameworks:

  • Operator Overloading (OO): Overloading the basic operators of the programming language to encapsulate their gradient rules. Record the operation trajectory of the network during forward execution in an operator overloaded manner, then apply the chain rule to the dynamically generated data flow graph to implement automatic differentiation.
  • Source Transformation (ST): This technology is evolving from the functional programming framework and performs automatic differential transformation on the intermediate expression (the expression form of the program during the compilation process) in the form of just-in-time compilation (JIT), supporting complex control flow scenarios, higher-order functions and closures.

PyTorch used OO. Compared to ST, OO generates gradient graph in runtime, so it does not need to take function call and control flow into consideration, which makes it easier to develop. However, OO can not perform gradient graph optimization in compilation time and the control flow has to be unfolded in runtime, so it is difficult to achieve extreme optimization in performance.

MindSpore implemented automatic differentiation based on ST. On the one hand, it supports automatic differentiation of automatic control flow, so it is quite convenient to build models like PyTorch. On the other hand, MindSpore can perform static compilation optimization on neural networks to achieve great performance.

Automatic Differentiation

The implementation of MindSpore automatic differentiation can be understood as the symbolic differentiation of the program itself. Because MindSpore IR is a functional intermediate expression, it has an intuitive correspondence with the composite function in basic algebra. The derivation formula of the composite function composed of arbitrary basic functions can be derived. Each primitive operation in MindSpore IR can correspond to the basic functions in basic algebra, which can build more complex flow control.

Automatic Parallel

The goal of MindSpore automatic parallel is to build a training method that combines data parallelism, model parallelism, and hybrid parallelism. It can automatically select a least cost model splitting strategy to achieve automatic distributed parallel training.

Automatic Parallel

At present, MindSpore uses a fine-grained parallel strategy of splitting operators, that is, each operator in the figure is split into a cluster to complete parallel operations. The splitting strategy during this period may be very complicated, but as a developer advocating Pythonic, you don't need to care about the underlying implementation, as long as the top-level API compute is efficient.

Installation

Pip mode method installation

MindSpore offers build options across multiple backends:

Hardware Platform Operating System Status
Ascend910 Ubuntu-x86 ✔️
Ubuntu-aarch64 ✔️
EulerOS-aarch64 ✔️
CentOS-x86 ✔️
CentOS-aarch64 ✔️
GPU CUDA 10.1 Ubuntu-x86 ✔️
CPU Ubuntu-x86 ✔️
Ubuntu-aarch64 ✔️
Windows-x86 ✔️

For installation using pip, take CPU and Ubuntu-x86 build version as an example:

  1. Download whl from MindSpore download page, and install the package.

    pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_x86/mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl
    
  2. Run the following command to verify the install.

    import numpy as np
    import mindspore.context as context
    import mindspore.nn as nn
    from mindspore import Tensor
    from mindspore.ops import operations as P
    
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    
    class Mul(nn.Cell):
        def __init__(self):
            super(Mul, self).__init__()
            self.mul = P.Mul()
    
        def construct(self, x, y):
            return self.mul(x, y)
    
    x = Tensor(np.array([1.0, 2.0, 3.0]).astype(np.float32))
    y = Tensor(np.array([4.0, 5.0, 6.0]).astype(np.float32))
    
    mul = Mul()
    print(mul(x, y))
    
    [ 4. 10. 18.]
    

Use pip mode method to install MindSpore in different environments. Refer to the following documents.

Source code compilation installation

Use the source code compilation method to install MindSpore in different environments. Refer to the following documents.

Docker Image

MindSpore docker image is hosted on Docker Hub, currently the containerized build options are supported as follows:

Hardware Platform Docker Image Repository Tag Description
CPU mindspore/mindspore-cpu x.y.z Production environment with pre-installed MindSpore x.y.z CPU release.
devel Development environment provided to build MindSpore (with CPU backend) from the source, refer to https://www.mindspore.cn/install/en for installation details.
runtime Runtime environment provided to install MindSpore binary package with CPU backend.
GPU mindspore/mindspore-gpu x.y.z Production environment with pre-installed MindSpore x.y.z GPU release.
devel Development environment provided to build MindSpore (with GPU CUDA10.1 backend) from the source, refer to https://www.mindspore.cn/install/en for installation details.
runtime Runtime environment provided to install MindSpore binary package with GPU CUDA10.1 backend.

NOTICE: For GPU devel docker image, it's NOT suggested to directly install the whl package after building from the source, instead we strongly RECOMMEND you transfer and install the whl package inside GPU runtime docker image.

  • CPU

    For CPU backend, you can directly pull and run the latest stable image using the below command:

    docker pull mindspore/mindspore-cpu:1.1.0
    docker run -it mindspore/mindspore-cpu:1.1.0 /bin/bash
    
  • GPU

    For GPU backend, please make sure the nvidia-container-toolkit has been installed in advance, here are some install guidelines for Ubuntu users:

    DISTRIBUTION=$(. /etc/os-release; echo $ID$VERSION_ID)
    curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | apt-key add -
    curl -s -L https://nvidia.github.io/nvidia-docker/$DISTRIBUTION/nvidia-docker.list | tee /etc/apt/sources.list.d/nvidia-docker.list
    
    sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit nvidia-docker2
    sudo systemctl restart docker
    

    Then edit the file daemon.json:

    $ vim /etc/docker/daemon.json
    {
        "runtimes": {
            "nvidia": {
                "path": "nvidia-container-runtime",
                "runtimeArgs": []
            }
        }
    }
    

    Restart docker again:

    sudo systemctl daemon-reload
    sudo systemctl restart docker
    

    Then you can pull and run the latest stable image using the below command:

    docker pull mindspore/mindspore-gpu:1.1.0
    docker run -it -v /dev/shm:/dev/shm --runtime=nvidia --privileged=true mindspore/mindspore-gpu:1.1.0 /bin/bash
    

    To test if the docker image works, please execute the python code below and check the output:

    import numpy as np
    import mindspore.context as context
    from mindspore import Tensor
    from mindspore.ops import functional as F
    
    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
    
    x = Tensor(np.ones([1,3,3,4]).astype(np.float32))
    y = Tensor(np.ones([1,3,3,4]).astype(np.float32))
    print(F.tensor_add(x, y))
    
    [[[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]],
    
    [[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]],
    
    [[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]]]
    

If you want to learn more about the building process of MindSpore docker images, please check out docker repo for the details.

Quickstart

See the Quick Start to implement the image classification.

Docs

More details about installation guide, tutorials and APIs, please see the User Documentation.

Community

Governance

Check out how MindSpore Open Governance works.

Communication

Contributing

Welcome contributions. See our Contributor Wiki for more details.

Maintenance phases

Project stable branches will be in one of the following states:

State Time frame Summary
Planning 1 - 3 months Features are under planning.
Development 3 months Features are under development.
Maintained 6 - 12 months All bugfixes are appropriate. Releases produced.
Unmaintained 0 - 3 months All bugfixes are appropriate. No Maintainers and No Releases produced.
End Of Life (EOL) N/A Branch no longer accepting changes.

Maintenance status

Branch Status Initial Release Date Next Phase EOL Date
r2.2 Maintained 2023-10-18 Unmaintained
2024-10-18 estimated
r2.1 Maintained 2023-07-29 Unmaintained
2024-07-29 estimated
r2.0 Maintained 2023-06-15 Unmaintained
2024-06-15 estimated
r1.10 End Of Life 2023-02-02 2024-02-02
r1.9 End Of Life 2022-10-26 2023-10-26
r1.8 End Of Life 2022-07-29 2023-07-29
r1.7 End Of Life 2022-04-29 2023-04-29
r1.6 End Of Life 2022-01-29 2023-01-29
r1.5 End Of Life 2021-10-15 2022-10-15
r1.4 End Of Life 2021-08-15 2022-08-15
r1.3 End Of Life 2021-07-15 2022-07-15
r1.2 End Of Life 2021-04-15 2022-04-29
r1.1 End Of Life 2020-12-31 2021-09-30
r1.0 End Of Life 2020-09-24 2021-07-30
r0.7 End Of Life 2020-08-31 2021-02-28
r0.6 End Of Life 2020-07-31 2020-12-30
r0.5 End Of Life 2020-06-30 2021-06-30
r0.3 End Of Life 2020-05-31 2020-09-30
r0.2 End Of Life 2020-04-30 2020-08-31
r0.1 End Of Life 2020-03-28 2020-06-30

Release Notes

The release notes, see our RELEASE.

License

Apache License 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mindspore-2.3.1-cp310-none-any.whl (328.8 MB view details)

Uploaded CPython 3.10

mindspore-2.3.1-cp310-cp310-manylinux1_x86_64.whl (946.8 MB view details)

Uploaded CPython 3.10

mindspore-2.3.1-cp39-none-any.whl (328.8 MB view details)

Uploaded CPython 3.9

mindspore-2.3.1-cp39-cp39-manylinux1_x86_64.whl (946.9 MB view details)

Uploaded CPython 3.9

mindspore-2.3.1-cp38-none-any.whl (328.9 MB view details)

Uploaded CPython 3.8

mindspore-2.3.1-cp38-cp38-manylinux1_x86_64.whl (946.8 MB view details)

Uploaded CPython 3.8

File details

Details for the file mindspore-2.3.1-cp310-none-any.whl.

File metadata

  • Download URL: mindspore-2.3.1-cp310-none-any.whl
  • Upload date:
  • Size: 328.8 MB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore-2.3.1-cp310-none-any.whl
Algorithm Hash digest
SHA256 d9be757fa42b30e546920b5dffe76527f3f94e9aac88b262174ecd2a0f32c2e0
MD5 b574c8f5106507b82525bd13941ab622
BLAKE2b-256 d212c6e2c689616eb66b61009b6f47e7460fa567952916691a9da30febd5f6dd

See more details on using hashes here.

File details

Details for the file mindspore-2.3.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

  • Download URL: mindspore-2.3.1-cp310-cp310-manylinux1_x86_64.whl
  • Upload date:
  • Size: 946.8 MB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore-2.3.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 568fc4a52e60f3087e9e0399fa9eed9ff0338bd08ecbcd9c101f2db39ee5fb01
MD5 03a982a5be71f02352124fc52fe1f835
BLAKE2b-256 2847d7a437366270483a4da5838317ffdec3c93313d54948507f9b749b010166

See more details on using hashes here.

File details

Details for the file mindspore-2.3.1-cp39-none-any.whl.

File metadata

  • Download URL: mindspore-2.3.1-cp39-none-any.whl
  • Upload date:
  • Size: 328.8 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore-2.3.1-cp39-none-any.whl
Algorithm Hash digest
SHA256 5fe6a476a7a718c413ac66db71ba93bfe2d6870e13ef90f10652a27170ed338e
MD5 d6badbc5e4f12f761f7dc6c173433233
BLAKE2b-256 e479f32b13ca470c8d94979423e9a9504e631e88bff278b09afd51b0e8e0801b

See more details on using hashes here.

File details

Details for the file mindspore-2.3.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: mindspore-2.3.1-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 946.9 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore-2.3.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 291ce96deb150445dfb6648998276fa0389264c822abddce58bd93ef65fdd993
MD5 d2dcb89c96dd9ab464d215172def6896
BLAKE2b-256 06ff4a606d1382bfc28aaaf38cf7f896992e57f75b4195a8eb2a90da8080f3bb

See more details on using hashes here.

File details

Details for the file mindspore-2.3.1-cp38-none-any.whl.

File metadata

  • Download URL: mindspore-2.3.1-cp38-none-any.whl
  • Upload date:
  • Size: 328.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore-2.3.1-cp38-none-any.whl
Algorithm Hash digest
SHA256 976854b9e0c2535541cacb6e1b0b887595fd7aaa03572670b148d1846b08d339
MD5 95a9e3c81f06af9215ca2ad20f07678d
BLAKE2b-256 0e529155b655ab7074ca3ec0ae26056261ce1823b889223ba2fd4bfb5dc7832b

See more details on using hashes here.

File details

Details for the file mindspore-2.3.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: mindspore-2.3.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 946.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore-2.3.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f7d19669517be1624d3475a6b22b54f2bc730b998eefd6020a9c9d6ef9d09dee
MD5 35471f2db6775c1cb95d67a442abab44
BLAKE2b-256 5f055d91ad3a005eaf0671f5cc525f6f23061510bafd16ec539e3fbde7bb4e59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page