Skip to main content

MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.

Project description

MindSpore Logo

PyPI - Python Version PyPI Downloads DockerHub LICENSE PRs Welcome

查看中文

What Is MindSpore

MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios. MindSpore is designed to provide development experience with friendly design and efficient execution for the data scientists and algorithmic engineers, native support for Ascend AI processor, and software hardware co-optimization. At the meantime MindSpore as a global AI open source community, aims to further advance the development and enrichment of the AI software/hardware application ecosystem.

MindSpore Architecture

For more details please check out our Architecture Guide.

Automatic Differentiation

Currently, there are two automatic differentiation techniques in mainstream deep learning frameworks:

  • Operator Overloading (OO): Overloading the basic operators of the programming language to encapsulate their gradient rules. Record the operation trajectory of the network during forward execution in an operator overloaded manner, then apply the chain rule to the dynamically generated data flow graph to implement automatic differentiation.
  • Source Transformation (ST): This technology is evolving from the functional programming framework and performs automatic differential transformation on the intermediate expression (the expression form of the program during the compilation process) in the form of just-in-time compilation (JIT), supporting complex control flow scenarios, higher-order functions and closures.

PyTorch used OO. Compared to ST, OO generates gradient graph in runtime, so it does not need to take function call and control flow into consideration, which makes it easier to develop. However, OO can not perform gradient graph optimization in compilation time and the control flow has to be unfolded in runtime, so it is difficult to achieve extreme optimization in performance.

MindSpore implemented automatic differentiation based on ST. On the one hand, it supports automatic differentiation of automatic control flow, so it is quite convenient to build models like PyTorch. On the other hand, MindSpore can perform static compilation optimization on neural networks to achieve great performance.

Automatic Differentiation

The implementation of MindSpore automatic differentiation can be understood as the symbolic differentiation of the program itself. Because MindSpore IR is a functional intermediate expression, it has an intuitive correspondence with the composite function in basic algebra. The derivation formula of the composite function composed of arbitrary basic functions can be derived. Each primitive operation in MindSpore IR can correspond to the basic functions in basic algebra, which can build more complex flow control.

Automatic Parallel

The goal of MindSpore automatic parallel is to build a training method that combines data parallelism, model parallelism, and hybrid parallelism. It can automatically select a least cost model splitting strategy to achieve automatic distributed parallel training.

Automatic Parallel

At present, MindSpore uses a fine-grained parallel strategy of splitting operators, that is, each operator in the figure is split into a cluster to complete parallel operations. The splitting strategy during this period may be very complicated, but as a developer advocating Pythonic, you don't need to care about the underlying implementation, as long as the top-level API compute is efficient.

Installation

Pip mode method installation

MindSpore offers build options across multiple backends:

Hardware Platform Operating System Status
Ascend Ubuntu-x86 ✔️
Ubuntu-aarch64 ✔️
EulerOS-aarch64 ✔️
CentOS-x86 ✔️
CentOS-aarch64 ✔️
GPU CUDA 10.1 Ubuntu-x86 ✔️
CPU Ubuntu-x86 ✔️
Ubuntu-aarch64 ✔️
Windows-x86 ✔️

For installation using pip, take CPU and Ubuntu-x86 build version as an example:

  1. Download whl from MindSpore download page, and install the package.

    pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_x86/mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl
    
  2. Run the following command to verify the install.

    import numpy as np
    import mindspore.context as context
    import mindspore.nn as nn
    from mindspore import Tensor
    from mindspore.ops import operations as P
    
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    
    class Mul(nn.Cell):
        def __init__(self):
            super(Mul, self).__init__()
            self.mul = P.Mul()
    
        def construct(self, x, y):
            return self.mul(x, y)
    
    x = Tensor(np.array([1.0, 2.0, 3.0]).astype(np.float32))
    y = Tensor(np.array([4.0, 5.0, 6.0]).astype(np.float32))
    
    mul = Mul()
    print(mul(x, y))
    
    [ 4. 10. 18.]
    

Use pip mode method to install MindSpore in different environments. Refer to the following documents.

Source code compilation installation

Use the source code compilation method to install MindSpore in different environments. Refer to the following documents.

Docker Image

MindSpore docker image is hosted on Docker Hub, currently the containerized build options are supported as follows:

Hardware Platform Docker Image Repository Tag Description
CPU mindspore/mindspore-cpu x.y.z Production environment with pre-installed MindSpore x.y.z CPU release.
devel Development environment provided to build MindSpore (with CPU backend) from the source, refer to https://www.mindspore.cn/install/en for installation details.
runtime Runtime environment provided to install MindSpore binary package with CPU backend.
GPU mindspore/mindspore-gpu x.y.z Production environment with pre-installed MindSpore x.y.z GPU release.
devel Development environment provided to build MindSpore (with GPU CUDA10.1 backend) from the source, refer to https://www.mindspore.cn/install/en for installation details.
runtime Runtime environment provided to install MindSpore binary package with GPU CUDA10.1 backend.

NOTICE: For GPU devel docker image, it's NOT suggested to directly install the whl package after building from the source, instead we strongly RECOMMEND you transfer and install the whl package inside GPU runtime docker image.

  • CPU

    For CPU backend, you can directly pull and run the latest stable image using the below command:

    docker pull mindspore/mindspore-cpu:1.1.0
    docker run -it mindspore/mindspore-cpu:1.1.0 /bin/bash
    
  • GPU

    For GPU backend, please make sure the nvidia-container-toolkit has been installed in advance, here are some install guidelines for Ubuntu users:

    DISTRIBUTION=$(. /etc/os-release; echo $ID$VERSION_ID)
    curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | apt-key add -
    curl -s -L https://nvidia.github.io/nvidia-docker/$DISTRIBUTION/nvidia-docker.list | tee /etc/apt/sources.list.d/nvidia-docker.list
    
    sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit nvidia-docker2
    sudo systemctl restart docker
    

    Then edit the file daemon.json:

    $ vim /etc/docker/daemon.json
    {
        "runtimes": {
            "nvidia": {
                "path": "nvidia-container-runtime",
                "runtimeArgs": []
            }
        }
    }
    

    Restart docker again:

    sudo systemctl daemon-reload
    sudo systemctl restart docker
    

    Then you can pull and run the latest stable image using the below command:

    docker pull mindspore/mindspore-gpu:1.1.0
    docker run -it -v /dev/shm:/dev/shm --runtime=nvidia --privileged=true mindspore/mindspore-gpu:1.1.0 /bin/bash
    

    To test if the docker image works, please execute the python code below and check the output:

    import numpy as np
    import mindspore.context as context
    from mindspore import Tensor
    from mindspore.ops import functional as F
    
    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
    
    x = Tensor(np.ones([1,3,3,4]).astype(np.float32))
    y = Tensor(np.ones([1,3,3,4]).astype(np.float32))
    print(F.tensor_add(x, y))
    
    [[[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]],
    
    [[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]],
    
    [[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]]]
    

If you want to learn more about the building process of MindSpore docker images, please check out docker repo for the details.

Quickstart

See the Quick Start to implement the image classification.

Docs

More details about installation guide, tutorials and APIs, please see the User Documentation.

Community

Governance

Check out how MindSpore Open Governance works.

Communication

Contributing

Welcome contributions. See our Contributor Wiki for more details.

Maintenance phases

Project stable branches will be in one of the following states:

State Time frame Summary
Planning 1 - 3 months Features are under planning.
Development 3 months Features are under development.
Maintained 6 - 12 months All bugfixes are appropriate. Releases produced.
Unmaintained 0 - 3 months All bugfixes are appropriate. No Maintainers and No Releases produced.
End Of Life (EOL) N/A Version no longer accepting changes.

Maintenance status

Version Status Initial Release Date Next Phase EOL Date
r2.4 Maintained 2024-10-30 Unmaintained
2025-10-30 estimated
2025-10-30
r2.3 Maintained 2024-07-15 Unmaintained
2025-07-15 estimated
2025-07-15
r2.2 End Of Life 2023-10-18 2024-10-18
r2.1 End Of Life 2023-07-29 2024-07-29
r2.0 End Of Life 2023-06-15 2024-06-15
r1.10 End Of Life 2023-02-02 2024-02-02
r1.9 End Of Life 2022-10-26 2023-10-26
r1.8 End Of Life 2022-07-29 2023-07-29
r1.7 End Of Life 2022-04-29 2023-04-29
r1.6 End Of Life 2022-01-29 2023-01-29
r1.5 End Of Life 2021-10-15 2022-10-15
r1.4 End Of Life 2021-08-15 2022-08-15
r1.3 End Of Life 2021-07-15 2022-07-15
r1.2 End Of Life 2021-04-15 2022-04-29
r1.1 End Of Life 2020-12-31 2021-09-30
r1.0 End Of Life 2020-09-24 2021-07-30
r0.7 End Of Life 2020-08-31 2021-02-28
r0.6 End Of Life 2020-07-31 2020-12-30
r0.5 End Of Life 2020-06-30 2021-06-30
r0.3 End Of Life 2020-05-31 2020-09-30
r0.2 End Of Life 2020-04-30 2020-08-31
r0.1 End Of Life 2020-03-28 2020-06-30

Release Notes

The release notes, see our RELEASE.

License

Apache License 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

mindspore_dev-2.6.0.dev20250323-cp311-none-any.whl (384.5 MB view details)

Uploaded CPython 3.11

mindspore_dev-2.6.0.dev20250323-cp311-cp311-win_amd64.whl (106.5 MB view details)

Uploaded CPython 3.11Windows x86-64

mindspore_dev-2.6.0.dev20250323-cp311-cp311-macosx_11_0_arm64.whl (154.9 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

mindspore_dev-2.6.0.dev20250323-cp311-cp311-macosx_10_15_x86_64.whl (172.7 MB view details)

Uploaded CPython 3.11macOS 10.15+ x86-64

mindspore_dev-2.6.0.dev20250323-cp310-none-any.whl (382.7 MB view details)

Uploaded CPython 3.10

mindspore_dev-2.6.0.dev20250323-cp310-cp310-win_amd64.whl (106.2 MB view details)

Uploaded CPython 3.10Windows x86-64

mindspore_dev-2.6.0.dev20250323-cp310-cp310-macosx_11_0_arm64.whl (154.5 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

mindspore_dev-2.6.0.dev20250323-cp310-cp310-macosx_10_15_x86_64.whl (172.2 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

mindspore_dev-2.6.0.dev20250323-cp39-none-any.whl (382.7 MB view details)

Uploaded CPython 3.9

mindspore_dev-2.6.0.dev20250323-cp39-cp39-win_amd64.whl (106.2 MB view details)

Uploaded CPython 3.9Windows x86-64

mindspore_dev-2.6.0.dev20250323-cp39-cp39-macosx_11_0_arm64.whl (154.5 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

mindspore_dev-2.6.0.dev20250323-cp39-cp39-macosx_10_15_x86_64.whl (172.2 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp311-none-any.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp311-none-any.whl
  • Upload date:
  • Size: 384.5 MB
  • Tags: CPython 3.11
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp311-none-any.whl
Algorithm Hash digest
SHA256 620a4c83804842230f6c37074d672a62abcd1083ef53ef283cbf53e57a727b8c
MD5 11141928811a96febb8c893cbc53c5d8
BLAKE2b-256 8cbdaa3de5ea086f22c5a099a2574614b95de07fa0a36ae2a3b03293127927c9

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 106.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f5f349750c39d351588fb8bf93c68a36bf34799e39df06797978398aa1464e5c
MD5 a5dabd3ff00205b0e8e7757d9797d19c
BLAKE2b-256 e4a7a5d12287ed467120e9d81f8b09e9fb8227380de7f1e65b145ef91918c1b2

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp311-cp311-manylinux1_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp311-cp311-manylinux1_x86_64.whl
  • Upload date:
  • Size: 958.3 MB
  • Tags: CPython 3.11
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 da4050e3a2cdf08de4b5b04c64a7b453f6391dfdc0995bd420ce7fc54aacb2b2
MD5 ef00b9f392dbd4d46b45e4d9cedfe4e8
BLAKE2b-256 91d0a1e71fa53378bfc9ac834c4e86b0563d959f3b3d648670b7f53c6d44a2ce

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 154.9 MB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b5b7437aa938c21688b4ff07c743e650ef5de0cc39521ca63be0cdd53f6458ed
MD5 8929df417bbb5c146ed16e3d3231e8fe
BLAKE2b-256 9129efffa0bdcf5bd2a1ff56b993f42f9ec83115aa0f3bea6db0c0699cbaeae1

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp311-cp311-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 172.7 MB
  • Tags: CPython 3.11, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 00788249f9923c2c601281ee3c0cdfb2d74a587eade9235d2bb9aaa5e577ab58
MD5 87439fddcde61315460cfba2a5c8deee
BLAKE2b-256 7d5e30ca4143343c92235b5fffa6a74db7a74ff5b77dd48da43939fb11c7f4ec

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp310-none-any.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp310-none-any.whl
  • Upload date:
  • Size: 382.7 MB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp310-none-any.whl
Algorithm Hash digest
SHA256 1f9bd16cc6b6d1ec1df9666d177fdf09636f507be682cc6aee1782824e9e8358
MD5 e73ef83c13615e9bcb580dbca48b6d13
BLAKE2b-256 88b2395499e1750fabe1ffd31f587fe91647ac27b815d100996b43414867a8cd

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 106.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ccb8c68edf504559fa59986291dec2eff592948d11ecc7d58219aacf451fc625
MD5 28f547ed017b27b85439122efa105404
BLAKE2b-256 f530004ad74b0716020ea1c6911d10a9aab50bd99da3f99e8bd69dc2d022faf2

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp310-cp310-manylinux1_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp310-cp310-manylinux1_x86_64.whl
  • Upload date:
  • Size: 955.3 MB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c991b6148202ec47d9eb378603de7f35990c38644febb117f0089f1be49de021
MD5 552501d2977d30d760a621c4a3c6837a
BLAKE2b-256 518c57a015a3d1aa72bef06cce822f1ce518a5afa6f39c9d13413f2f3012374f

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 154.5 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e09b62030a1f4ad984e2fa4f2a46e10e4ee5bcb2efc446ee5672131b0dcf445b
MD5 234d2c4b6b894e5dc8ea26c98b3230ed
BLAKE2b-256 152c5d614a2b4b064e501389ce06178cffcbe28597c6a94e37c8dcb55a740472

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 172.2 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a5871d2b26d6ae62e78d23496574d218f2ae8a8ebf45be091d1c7221d0b68650
MD5 6cb52a45acce173afdc8ae3394d3719c
BLAKE2b-256 a9dc7c22b85ef695247477c1a2a0aa969cf411e9e18863d58ec3b3af01db7f68

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp39-none-any.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp39-none-any.whl
  • Upload date:
  • Size: 382.7 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp39-none-any.whl
Algorithm Hash digest
SHA256 44e51b8a6dd8edd342a02140697f001241df5d6cdf79d8ca8298e3dcb6d6ad23
MD5 73a5b4d942a8fe4c6bfe1ad46313ff88
BLAKE2b-256 fbea5a6edf52843f29be6c72500587894d1ded9dffc4077529bca9589242c440

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 106.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a440df8b4a5b3d3a7746783463a069a999723cf7475ef37e5215dbbd9dddd45e
MD5 ffd4fc3d82965e232b4a3671f15b7b38
BLAKE2b-256 9a5be4703f404d3c1bffb320f5f779f70a74eef12baecc805afd3ec09085c456

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 955.2 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 70d7a63d935b760766f726e0a69ac0fa1f31c2237e6ebd739df2613728dd51a5
MD5 4081eb3052b98df01f739e86fe404d63
BLAKE2b-256 34ae7dd3ebc53344558870207eb5603c988d2ab8e83ee7f17aa7df13c2db9243

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 154.5 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60f85ddbb3ffd7cb004926464f5206b36fec20f78d8895c48b4bab490796f417
MD5 67c133dd86204bfcdfd0ed43f3987adc
BLAKE2b-256 a61b3b92cb15e19ff1ffa911981653896b1ef2b0587cdb8189a4b4ce4078e6b0

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.6.0.dev20250323-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.6.0.dev20250323-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 172.2 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.6.0.dev20250323-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 dd0080a963c7a704494ae2ebe0eff940d298b4fa22405e5b56df48692a9180b7
MD5 f48565daf761f1df83cdbb4925c614e5
BLAKE2b-256 e262477c23b5a169edf8e123ba840c3d2633fbe3bf20a77bd67d466a4b4ea36d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page