Skip to main content

MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.

Project description

MindSpore Logo

PyPI - Python Version PyPI Downloads DockerHub LICENSE Slack PRs Welcome

查看中文

What Is MindSpore

MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios. MindSpore is designed to provide development experience with friendly design and efficient execution for the data scientists and algorithmic engineers, native support for Ascend AI processor, and software hardware co-optimization. At the meantime MindSpore as a global AI open source community, aims to further advance the development and enrichment of the AI software/hardware application ecosystem.

MindSpore Architecture

For more details please check out our Architecture Guide.

Automatic Differentiation

Currently, there are two automatic differentiation techniques in mainstream deep learning frameworks:

  • Operator Overloading (OO): Overloading the basic operators of the programming language to encapsulate their gradient rules. Record the operation trajectory of the network during forward execution in an operator overloaded manner, then apply the chain rule to the dynamically generated data flow graph to implement automatic differentiation.
  • Source Transformation (ST): This technology is evolving from the functional programming framework and performs automatic differential transformation on the intermediate expression (the expression form of the program during the compilation process) in the form of just-in-time compilation (JIT), supporting complex control flow scenarios, higher-order functions and closures.

PyTorch used OO. Compared to ST, OO generates gradient graph in runtime, so it does not need to take function call and control flow into consideration, which makes it easier to develop. However, OO can not perform gradient graph optimization in compilation time and the control flow has to be unfolded in runtime, so it is difficult to achieve extreme optimization in performance.

MindSpore implemented automatic differentiation based on ST. On the one hand, it supports automatic differentiation of automatic control flow, so it is quite convenient to build models like PyTorch. On the other hand, MindSpore can perform static compilation optimization on neural networks to achieve great performance.

Automatic Differentiation

The implementation of MindSpore automatic differentiation can be understood as the symbolic differentiation of the program itself. Because MindSpore IR is a functional intermediate expression, it has an intuitive correspondence with the composite function in basic algebra. The derivation formula of the composite function composed of arbitrary basic functions can be derived. Each primitive operation in MindSpore IR can correspond to the basic functions in basic algebra, which can build more complex flow control.

Automatic Parallel

The goal of MindSpore automatic parallel is to build a training method that combines data parallelism, model parallelism, and hybrid parallelism. It can automatically select a least cost model splitting strategy to achieve automatic distributed parallel training.

Automatic Parallel

At present, MindSpore uses a fine-grained parallel strategy of splitting operators, that is, each operator in the figure is split into a cluster to complete parallel operations. The splitting strategy during this period may be very complicated, but as a developer advocating Pythonic, you don't need to care about the underlying implementation, as long as the top-level API compute is efficient.

Installation

Pip mode method installation

MindSpore offers build options across multiple backends:

Hardware Platform Operating System Status
Ascend910 Ubuntu-x86 ✔️
Ubuntu-aarch64 ✔️
EulerOS-aarch64 ✔️
CentOS-x86 ✔️
CentOS-aarch64 ✔️
GPU CUDA 10.1 Ubuntu-x86 ✔️
CPU Ubuntu-x86 ✔️
Ubuntu-aarch64 ✔️
Windows-x86 ✔️

For installation using pip, take CPU and Ubuntu-x86 build version as an example:

  1. Download whl from MindSpore download page, and install the package.

    pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.2.0-rc1/MindSpore/cpu/ubuntu_x86/mindspore-1.2.0rc1-cp37-cp37m-linux_x86_64.whl
    
  2. Run the following command to verify the install.

    import numpy as np
    import mindspore.context as context
    import mindspore.nn as nn
    from mindspore import Tensor
    from mindspore.ops import operations as P
    
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    
    class Mul(nn.Cell):
        def __init__(self):
            super(Mul, self).__init__()
            self.mul = P.Mul()
    
        def construct(self, x, y):
            return self.mul(x, y)
    
    x = Tensor(np.array([1.0, 2.0, 3.0]).astype(np.float32))
    y = Tensor(np.array([4.0, 5.0, 6.0]).astype(np.float32))
    
    mul = Mul()
    print(mul(x, y))
    
    [ 4. 10. 18.]
    

Use pip mode method to install MindSpore in different environments. Refer to the following documents.

Source code compilation installation

Use the source code compilation method to install MindSpore in different environments. Refer to the following documents.

Docker Image

MindSpore docker image is hosted on Docker Hub, currently the containerized build options are supported as follows:

Hardware Platform Docker Image Repository Tag Description
CPU mindspore/mindspore-cpu x.y.z Production environment with pre-installed MindSpore x.y.z CPU release.
devel Development environment provided to build MindSpore (with CPU backend) from the source, refer to https://www.mindspore.cn/install/en for installation details.
runtime Runtime environment provided to install MindSpore binary package with CPU backend.
GPU mindspore/mindspore-gpu x.y.z Production environment with pre-installed MindSpore x.y.z GPU release.
devel Development environment provided to build MindSpore (with GPU CUDA10.1 backend) from the source, refer to https://www.mindspore.cn/install/en for installation details.
runtime Runtime environment provided to install MindSpore binary package with GPU CUDA10.1 backend.

NOTICE: For GPU devel docker image, it's NOT suggested to directly install the whl package after building from the source, instead we strongly RECOMMEND you transfer and install the whl package inside GPU runtime docker image.

  • CPU

    For CPU backend, you can directly pull and run the latest stable image using the below command:

    docker pull mindspore/mindspore-cpu:1.1.0
    docker run -it mindspore/mindspore-cpu:1.1.0 /bin/bash
    
  • GPU

    For GPU backend, please make sure the nvidia-container-toolkit has been installed in advance, here are some install guidelines for Ubuntu users:

    DISTRIBUTION=$(. /etc/os-release; echo $ID$VERSION_ID)
    curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | apt-key add -
    curl -s -L https://nvidia.github.io/nvidia-docker/$DISTRIBUTION/nvidia-docker.list | tee /etc/apt/sources.list.d/nvidia-docker.list
    
    sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit nvidia-docker2
    sudo systemctl restart docker
    

    Then edit the file daemon.json:

    $ vim /etc/docker/daemon.json
    {
        "runtimes": {
            "nvidia": {
                "path": "nvidia-container-runtime",
                "runtimeArgs": []
            }
        }
    }
    

    Restart docker again:

    sudo systemctl daemon-reload
    sudo systemctl restart docker
    

    Then you can pull and run the latest stable image using the below command:

    docker pull mindspore/mindspore-gpu:1.1.0
    docker run -it -v /dev/shm:/dev/shm --runtime=nvidia --privileged=true mindspore/mindspore-gpu:1.1.0 /bin/bash
    

    To test if the docker image works, please execute the python code below and check the output:

    import numpy as np
    import mindspore.context as context
    from mindspore import Tensor
    from mindspore.ops import functional as F
    
    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
    
    x = Tensor(np.ones([1,3,3,4]).astype(np.float32))
    y = Tensor(np.ones([1,3,3,4]).astype(np.float32))
    print(F.tensor_add(x, y))
    
    [[[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]],
    
    [[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]],
    
    [[ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.],
    [ 2.  2.  2.  2.]]]
    

If you want to learn more about the building process of MindSpore docker images, please check out docker repo for the details.

Quickstart

See the Quick Start to implement the image classification.

Docs

More details about installation guide, tutorials and APIs, please see the User Documentation.

Community

Governance

Check out how MindSpore Open Governance works.

Communication

Contributing

Welcome contributions. See our Contributor Wiki for more details.

Maintenance phases

Project stable branches will be in one of the following states:

State Time frame Summary
Planning 1 - 3 months Features are under planning.
Development 3 months Features are under development.
Maintained 6 - 12 months All bugfixes are appropriate. Releases produced.
Unmaintained 0 - 3 months All bugfixes are appropriate. No Maintainers and No Releases produced.
End Of Life (EOL) N/A Version no longer accepting changes.

Maintenance status

Version Status Initial Release Date Next Phase EOL Date
r2.4 Maintained 2024-10-30 Unmaintained
2025-10-30 estimated
2025-10-30
r2.3 Maintained 2024-07-15 Unmaintained
2025-07-15 estimated
2025-07-15
r2.2 End Of Life 2023-10-18 2024-10-18
r2.1 End Of Life 2023-07-29 2024-07-29
r2.0 End Of Life 2023-06-15 2024-06-15
r1.10 End Of Life 2023-02-02 2024-02-02
r1.9 End Of Life 2022-10-26 2023-10-26
r1.8 End Of Life 2022-07-29 2023-07-29
r1.7 End Of Life 2022-04-29 2023-04-29
r1.6 End Of Life 2022-01-29 2023-01-29
r1.5 End Of Life 2021-10-15 2022-10-15
r1.4 End Of Life 2021-08-15 2022-08-15
r1.3 End Of Life 2021-07-15 2022-07-15
r1.2 End Of Life 2021-04-15 2022-04-29
r1.1 End Of Life 2020-12-31 2021-09-30
r1.0 End Of Life 2020-09-24 2021-07-30
r0.7 End Of Life 2020-08-31 2021-02-28
r0.6 End Of Life 2020-07-31 2020-12-30
r0.5 End Of Life 2020-06-30 2021-06-30
r0.3 End Of Life 2020-05-31 2020-09-30
r0.2 End Of Life 2020-04-30 2020-08-31
r0.1 End Of Life 2020-03-28 2020-06-30

Release Notes

The release notes, see our RELEASE.

License

Apache License 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mindspore_dev-2.4.0.dev20241103-cp311-none-any.whl (338.4 MB view details)

Uploaded CPython 3.11

mindspore_dev-2.4.0.dev20241103-cp311-cp311-win_amd64.whl (100.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

mindspore_dev-2.4.0.dev20241103-cp311-cp311-macosx_11_0_arm64.whl (224.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mindspore_dev-2.4.0.dev20241103-cp311-cp311-macosx_10_15_x86_64.whl (240.4 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

mindspore_dev-2.4.0.dev20241103-cp310-none-any.whl (336.6 MB view details)

Uploaded CPython 3.10

mindspore_dev-2.4.0.dev20241103-cp310-cp310-win_amd64.whl (100.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

mindspore_dev-2.4.0.dev20241103-cp310-cp310-macosx_11_0_arm64.whl (224.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mindspore_dev-2.4.0.dev20241103-cp310-cp310-macosx_10_15_x86_64.whl (239.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

mindspore_dev-2.4.0.dev20241103-cp39-none-any.whl (336.6 MB view details)

Uploaded CPython 3.9

mindspore_dev-2.4.0.dev20241103-cp39-cp39-win_amd64.whl (100.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

mindspore_dev-2.4.0.dev20241103-cp39-cp39-macosx_11_0_arm64.whl (224.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mindspore_dev-2.4.0.dev20241103-cp39-cp39-macosx_10_15_x86_64.whl (240.0 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp311-none-any.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp311-none-any.whl
  • Upload date:
  • Size: 338.4 MB
  • Tags: CPython 3.11
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp311-none-any.whl
Algorithm Hash digest
SHA256 3a2acf4652c34b60d7d0707300bd6d385faabd1094edd4cadd50e6278dbb429e
MD5 5963efd34d76db292e9bc7d88841475d
BLAKE2b-256 6c21cd4036b36dcf59c5b1033e1ceb460d625cda183923857a4900d7d720ee46

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 100.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f0ecae05d214fa2cca698051edee45dc83da17441eea68da4fd9cf753eab8c2e
MD5 67ce8ce6ef5646686ddfe762e9c095e7
BLAKE2b-256 3ded4d9cc2cd0e76fa663529ce1f19b4d5d3115aca14f5406ff9ba3421d3f488

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp311-cp311-manylinux1_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp311-cp311-manylinux1_x86_64.whl
  • Upload date:
  • Size: 976.3 MB
  • Tags: CPython 3.11
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ef3efbd4a8ee8900be7b41c9f19684b4a841bf129fba6a75d962289aa29a97ce
MD5 9fc1fe7e41ff33aba0d240b9ea370523
BLAKE2b-256 b462cc48bde5e78fc1f0125fa89e1eb3b5fa6b3f0c2c6d9d0e8de402bcfb8b2d

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 224.6 MB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66284ffc4a60070bff308e3296fa21432eb2e6e8a119ebb9e9722e6ae23dc31b
MD5 ac77216dc9fbde24ce2326dae4b9bb28
BLAKE2b-256 dc46fc161f804867cee341ee2d077edf76df863b0ebedafaafa28d11f4dcf115

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp311-cp311-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 240.4 MB
  • Tags: CPython 3.11, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9010b7090d449ec27695d8ca8f3e8b08a8541fbe056927be5ce62f0362982a0e
MD5 6a6aa93a89ce1a622612f8c185681077
BLAKE2b-256 8cacb429321f9837f976e029391d74773e0c9e89156d4bb434f73721b0647f80

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp310-none-any.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp310-none-any.whl
  • Upload date:
  • Size: 336.6 MB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp310-none-any.whl
Algorithm Hash digest
SHA256 cc8be27d185b332dd8d48b8a92c656007c6b5ee8dc32d6b310946efe06b82b9d
MD5 fdea99b1d91ac865d69fdc00ed097f5e
BLAKE2b-256 d95e71e22234cd26d9bc2a1e7c51a5bac702cdd7d72be6106a6a5bbc401700d3

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 100.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2707b38ebb3c529ef11a8e5d88c899a086103bf84ee84256584e6ad7f9be51e1
MD5 3a952ae281e2e55b95302d32d8e6c0a5
BLAKE2b-256 afcccb3330c315b625d13ff682693dba9b7c9a5894eb80415804104c43e9d55c

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp310-cp310-manylinux1_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp310-cp310-manylinux1_x86_64.whl
  • Upload date:
  • Size: 972.9 MB
  • Tags: CPython 3.10
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7adf3297fbb71a900e1aeae8d8487703243fc3a45c3f66598ec3f08f173989c5
MD5 22866dba5cb2c61b127b1be8084d2b7c
BLAKE2b-256 e1bed1d3c470460e31af118874b2a61074d4f959d986fe849acee241c6bbf03c

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 224.4 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c94477e70ef9a65f73d0de5c611e683a040d873cb48e5ca567ccef9c7ec18e14
MD5 063c3d432731f3982133e71592858a9a
BLAKE2b-256 16c41f55a7aecb47e752a903dd54e618aca8a2e62d9baf096e24a56508ba5c81

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 239.8 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 daf761786d8a3e0c65947d70b81906089b7032b62bd8f825e551dddf7c0f4743
MD5 f314ae9c3851b92ecb73ea3583af05de
BLAKE2b-256 6eda63116f57fc56e344b31d0892686bef468ee15125ffe3d9d675a89c96d677

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp39-none-any.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp39-none-any.whl
  • Upload date:
  • Size: 336.6 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp39-none-any.whl
Algorithm Hash digest
SHA256 44c41c1682712db8f2238796a9ca302dde59fc76c950db0ccfc61e85c3202f9d
MD5 63dbfdb44f4fd939e0e1885c383b4734
BLAKE2b-256 64ea0166291089879b44205347ef69c97042496d83824a00f64624a340d712cc

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 100.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7bcba9e8ec2fb4d39180552d028992a951bf7a9c10327f0db3e7c7b80a605a87
MD5 5b7ff154c6e2e346147664d17ebcaead
BLAKE2b-256 08bd1606cc7460711f7f15d1b12aed80f6d6f5c47d66848f8111dc431894516f

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 972.9 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2c3c83c70ad5bbba3d44b6c87e63e7b38b86cc2b857a7fd4266eb74ae16353dd
MD5 d71bba900b7f868585a0c77dfe571d77
BLAKE2b-256 11be8b29449a45dcc1930ded71ee8dbcf36d865a55aa9e5eb1318701f26db2a2

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 224.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88709493c028031df5434e9c5c356e38136153a63c6e5b2bc292e156fc512f70
MD5 359d7571c181c25995037ae306f7792a
BLAKE2b-256 2bbc11e7598b76c289cbc524461853b07e18a3a48dbaf979de19b7d242591da3

See more details on using hashes here.

File details

Details for the file mindspore_dev-2.4.0.dev20241103-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: mindspore_dev-2.4.0.dev20241103-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 240.0 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1

File hashes

Hashes for mindspore_dev-2.4.0.dev20241103-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d36c821a81dfd7d9f8d5e44b3808f38ccc9ee88e2422fa7d3d58c1387cfa110d
MD5 324072907299066581d4b557caa1cf32
BLAKE2b-256 4c8c325087e4c45623cfb05e6c23d23388f023750fd5099410a5173f3660e1b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page