Skip to main content

minepy - Maximal Information-based Nonparametric Exploration

Project description

https://travis-ci.org/minepy/minepy.png?branch=master Documentation Status

minepy provides an ANSI C library for the Maximal Information-based Nonparametric Exploration (MIC and MINE family). Key features:

  • APPROX-MIC (the original algorithm, DOI: 10.1126/science.1205438) and MIC_e (DOI: arXiv:1505.02213 and DOI: arXiv:1505.02214) estimators;
  • Total Information Coefficient (TIC, DOI: arXiv:1505.02213) and the Generalized Mean Information Coefficient (GMIC, DOI: arXiv:1308.5712);
  • a C++ interface;
  • an efficient Python API;
  • an efficient MATLAB/OCTAVE API;
  • a command-line application similar to the original MINE.jar;
  • the minerva R interface is available at CRAN.

minepy is an open-source, GPLv3-licensed software.

Citing minepy

Davide Albanese, Michele Filosi, Roberto Visintainer, Samantha Riccadonna, Giuseppe Jurman and Cesare Furlanello. minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers. Bioinformatics (2013) 29(3): 407-408 first published online December 14, 2012 doi:10.1093/bioinformatics/bts707.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for minepy, version 1.2.0
Filename, size File type Python version Upload date Hashes
Filename, size minepy-1.2.0.tar.gz (482.0 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page