Skip to main content

An out-of-the-box GUI tool for offline deep reinforcement learning

Project description

MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

PyPI version test Docker Cloud Build Status Documentation Status Maintainability codecov MIT

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Documentation: https://minerva-ui.readthedocs.io

Chat: Gitter

key features

:zap: All You Need Is Dataset

MINERVA only requires datasets to start offline deep reinforcement learning. Any combinations of vector observations and image observations with discrete actions and continuous actions are supported.

:beginner: Stunning GUI

MINERVA provides designed with intuitive GUI to let everyone lerverage extremely powerful algorithms without barriers. The GUI is developed as a Single Page Application (SPA) to make it work in the eye-opening speed.

:rocket: Powerful Algorithm

MINERVA is powered by d3rlpy, a powerful offline deep reinforcement learning library for Python, to provide extremely powerful algorithms in an out-of-the-box way. The trained policy can be exported as TorchScript and ONNX.

installation

PyPI

$ pip install minerva-ui

Docker

$ docker run -d --gpus all -p 9000:9000 --name minerva takuseno/minerva:latest

update guide

If you update MINERVA, the database schema should be also updated as follows:

$ pip install -U minerva-ui
$ minerva upgrade-db

usage

run server

At the first time, ~/.minerva will be automatically created to store database, uploaded datasets and training metrics.

$ minerva run

By default, you can access to MINERVA interface at http://localhost:9000 . You can change the host and port with --host and --port arguments respectively.

delete data

You can delete entire data (~/.minerva) as follows:

$ minerva clean

contributions

build

$ npm install
$ npm run build

coding style

This repository is fully formatted with yapf and standard. You can format the entire scripts as follows:

$ ./scripts/format

lint

This repository is fully analyzed with Pylint, ESLint and sass-lint. You can run analysis as follows:

$ ./scripts/lint

test

The unit tests are provided as much as possible. This repository is using pytest-cov instead of pytest. You can run the entire tests as follows:

$ ./scripts/test

acknowledgement

This work is supported by Information-technology Promotion Agency, Japan (IPA), Exploratory IT Human Resources Project (MITOU Program) in the fiscal year 2020.

The concept of the GUI software for deep reinforcement learning is inspired by DeepAnalyzer from Ghelia inc. I'm showing the great respect to the team here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

minerva-ui-0.40.tar.gz (224.7 kB view details)

Uploaded Source

Built Distribution

minerva_ui-0.40-py3-none-any.whl (228.9 kB view details)

Uploaded Python 3

File details

Details for the file minerva-ui-0.40.tar.gz.

File metadata

  • Download URL: minerva-ui-0.40.tar.gz
  • Upload date:
  • Size: 224.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.7

File hashes

Hashes for minerva-ui-0.40.tar.gz
Algorithm Hash digest
SHA256 d906f4f8db0db148e0446d93b0fdb05997282b26ce90da207eb0aaa63ce1aade
MD5 fbb45e2584962bbde96c7e51ba14a784
BLAKE2b-256 3d89b1c1cddfea9f7838fe7a3317a50554d8ca3db6b7329469a8d27744c83f22

See more details on using hashes here.

File details

Details for the file minerva_ui-0.40-py3-none-any.whl.

File metadata

  • Download URL: minerva_ui-0.40-py3-none-any.whl
  • Upload date:
  • Size: 228.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.7

File hashes

Hashes for minerva_ui-0.40-py3-none-any.whl
Algorithm Hash digest
SHA256 710a36ebe30d480a9c390392bafd906479cd35791a65688f55a31a0212cc885b
MD5 8dfdcb3ff24476239c21d5930e609900
BLAKE2b-256 fec0ed98e73c39495eeb5e4c3c519c02fe03ec03f8bbfe7ddb77c45da689a355

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page