Skip to main content

tiny abstract data type on python

Project description

how to use

## create Type

>>> from miniadt import ADTTypeProvider
>>> TreeType = ADTTypeProvider("Tree")

>>> Node = TreeType("Node", "e children")
>>> Leaf = TreeType("Leaf", "e")


## printing value

>>> Leaf(e=10)
Leaf(e=10)
>>> Node(e=10, children=[Leaf(e=20)])
Node(e=10, children=[Leaf(e=20)])


## use pattern match

>>> @TreeType.match
... class depth(object):
...     def Node(e, children):
...         return max(depth(e)for e in children) + 1
...
...     def Leaf(e):
...         return 1

>>> depth(Leaf(e=10))
1

>>> depth(Node(e=10, children=[Leaf(e=20), Node(e=30, children=[Leaf(e=40)])]))
3

miniadt has comprehensive check function.

## not comprehensive definition on pattern matching function error is occur

### 1. lack of dispatch andidates
>>> class invalid_dispatch(object):
...     def Node(e, children):
...         return "foo"

>>> TreeType.match(invalid_dispatch)
Traceback (most recent call last):
 ...
miniadt.NotComprehensive: Leaf is not found. expected=['Node', 'Leaf']


### 2. dispatch function's arguments are invalid.
>>> class invalid_dispatch2(object):
...     def Node(e):  ## correct argsspec is "e, children"
...         return "foo"
...     def Leaf(e):
...         return "foo"

>>> TreeType.match(invalid_dispatch2)
Traceback (most recent call last):
 ...
miniadt.NotComprehensive: on Tree.Node:  expected=['e', 'children'] != actual=['e']

similar functions

  • match
  • match_instance
  • classify
from miniadt import ADTTypeProvider
Tree = ADTTypeProvider("Tree")
Node = Tree("Node", "e children")
Leaf = Tree("Leaf", "e")

print(Leaf(e=10))  # => Leaf(e=10)
print(Node(e=10, children=[Leaf(e=20)]))  # => Node(e=10, children=[Leaf(e=20)])


@Tree.match
class depth(object):
    def Leaf(e):
        return 1

    def Node(e, children):
        return max(depth(e) for e in children) + 1


print(depth(Leaf(e=10)))  # => 10
print(depth(Node(e=10, children=[Leaf(e=20)])))  # 2


@Tree.match_instance
class Applicator(object):
    def __init__(self, name):
        self.name = name

    def Leaf(self, e):
        return self.name

    def Node(self, e, children):
        return [self.name, [self(x) for x in children]]

print(Applicator("foo")(Leaf(e=10)))  # => foo
print(Applicator("foo")(Node(e=10, children=[Leaf(e=20)])))  # => ['foo', ['foo']]


@Tree.classify
class ToDict(object):
    def Leaf(self, leaf):
        return leaf.e

    def Node(self, node):
        return {"e": node.e, "children": [self(e) for e in node.children]}

todict = ToDict()
print(todict(Leaf(e=10)))  # => 10
print(todict(Node(e=10, children=[Leaf(e=20)])))  # => {'e': 10, 'children': [20]}

Project details


Release history Release notifications

This version
History Node

0.4.0

History Node

0.3.0

History Node

0.2.1

History Node

0.2

History Node

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
miniadt-0.4.0.tar.gz (5.9 kB) Copy SHA256 hash SHA256 Source None Jun 8, 2015

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page