Skip to main content

A small package for statistical distributions

Project description

minimal-stats

This is a simple python package for statistical distributions. Currently this package calcuates Binomial and Gaussian distribution.

build  Python  pypi  wheel  code size  Contributor Covenant  License 

Installation

    pip install minimal-stats

Gaussian Distribution

We can directly provide the mean and standard deviation of data (or read data from a file) and add two gaussain distribution.

    >>> from distributions import Gaussian
    >>> g1 = Gaussian(180, 34)
    >>> g1
    g = Gaussian(mean=180, stdev=34)

    >> str(g1)
    'mean 180, standard deviation 34'

    >>> g2 = Gaussian(180, 34)
    >>> g1 + g2
    g = Gaussian(mean=360, stdev=48.08326112068523)

Here, we read data from a file, calculate mean, standard deviation and probability density function of gaussian distribution and then see graphical output

    >>> from distributions import Gaussian
    >>> g = Gaussian()
    >>> g.read_data_file(r'\tests\input\numbers.txt')

    >>> g.calculate_mean()
    78.0909090909091
    >>> g.calculate_stdev()
    92.87459776004906
    >>> g.pdf(5)
    0.0031515485379333356
    >>> g.plot_histogram_pdf()

gaussian image

Binomial Distribution

We can directly provide the n and p of data (or read from file as before) and calculate mean, standard deviation and probability mass function of binomial distribution.

    >>> from distributions import Binomial
    >>> b = Binomial(0.15, 60)
    >>> b
    b = Binomial(p=0.15, n=60)

    >>> b.calculate_mean()
    9.0
    >>> b.calculate_stdev()
    2.765863337187866
    >>> b.pmf(7)
    0.11985659270959788

    >>> a = Binomial(0.15, 50)
    >>> a + b
    b = Binomial(p=0.15, n=110)

Here, we read data from a file, `b.replace_stats_with_data()calculate mean, standard deviation, n and p of Binomial distribution and then we plot bar graph of pmf.

    >>> from distributions import Binomial
    >>> b.read_data_file(r'\tests\input\numbers_binomial.txt')
    >>> b.replace_stats_with_data()
    >>> str(b)
    'mean 8.0, standard deviation 1.7541160386140584, p 0.6153846153846154, n 13'
    >>> b.plot_bar_pmf()

binomial image

Contribution

We appreciate feedback and contribution to this repo! Before you get started, please see the following:

License

This project is licensed under the MIT License - see the LICENSE file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

minimal-stats-1.0.0.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

minimal_stats-1.0.0-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file minimal-stats-1.0.0.tar.gz.

File metadata

  • Download URL: minimal-stats-1.0.0.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.5

File hashes

Hashes for minimal-stats-1.0.0.tar.gz
Algorithm Hash digest
SHA256 7c84f15d30c6e8479db4e4172f74548b27da8b1322a2b2bdfc2377ab5d2cdd71
MD5 f2c1fbdb661a6936259bffa3ee3fe0fd
BLAKE2b-256 0b02ffeb9cedd2e37e96659663e9f3990415ef875a87e5882e7c1832a44d4b28

See more details on using hashes here.

File details

Details for the file minimal_stats-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: minimal_stats-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.5

File hashes

Hashes for minimal_stats-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a7c40b1a423d4e83d4411542396d95cc8e2a9169ddbef3d199ad582dc250b75b
MD5 2a42163dede81d1b7aee3f52d5e0a449
BLAKE2b-256 724d45450e02908d6307800143f9bb7cb8e28385b647fae6b4b1f9d698dae3bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page