Skip to main content

miniogre: from source code to reproducible environment, in seconds.

Project description

miniogre

miniogre automates the management of software dependencies with AI, to ensure your Python code runs on any computer. It is a command-line application that analyzes a Python codebase to automatically generate a Dockerfile, requirements.txt file, and SBOM files, expediting the process of packaging any Python application. Additionally, it is able to update the README (documentation) file to comply with what really happens in the source code.

miniogre_gif_33

Why miniogre

Developers waste hours per week managing software dependencies. This is particularly true in AI development where many Python packages lack proper documentation and have outdated configuration files. Miniogre empowers developers to automatically identify, update, and install the necessary software dependencies to get code to work. Unlike other tools that need manual setup, miniogre uses AI to quickly handle Python dependencies setup, cutting down "dependency hunting" from hours a week to just minutes.

How it Works

Upon running the application, it carries out the following steps:

  • The project directory is scrutinized to identify the primary code language.
  • The README file is located and read.
  • The source code is crawled to obtain a preliminary list of requirements.
  • A large language model (LLM) provider (choices are openai, mistral, groq, octoai) is used to refine the list of requirements and generate the final content for the requirements.txt file.
  • The requirements.txt, Dockerfile, and sbom.json files are created.
  • A Docker image of the application is built.
  • An ogre container is spun up.

Two main commands can be run, with the miniogre/main.py file serving as the entry point.

  • run: Executes a series of actions, including configuring directories and files (bashrc, Dockerfile), generating requirements, building a Docker image, and spinning up a container.
  • readme: Constructs a new README.md file that mirrors the operations observed within the source code.

For more in-depth execution details, refer to miniogre/main.py,miniogre/actions.py, and miniogre/config.py.

Requirements

To use miniogre effectively, ensure the following are installed:

  • Python 3: Miniogre is developed in Python. If it's not already installed, get Python here.
  • Docker: Docker is a platform used to eliminate "works on my machine" problems when collaborating on code with co-workers. If it's not already installed, get Docker here.
  • pip or pipx: These are python package installers used to install miniogre. If they are not already installed, get pipx here or pip here.
  • An API token of at least one of the following LLM inference providers:
    • openai: type export OPENAI_API_KEY=<YOUR_TOKEN> on the terminal;
    • mistral: type export MISTRAL_API_KEY=<YOUR_TOKEN> on the terminal;
    • groq: type export GROQ_SECRET_ACCESS_KEY=<YOUR_TOKEN> on the terminal;
    • octoai: type export OCTOAI_TOKEN=<YOUR_TOKEN> on the terminal.

OpenAI token in the environment:

Installation

Miniogre can be installed either by using pip or pipx:

  • pip install miniogre
  • pipx install miniogre

You can also build the wheel from the source and then install it on your system. We provide a handy script install.sh to accomplish that.

Usage

After installation, go inside the project folder and run:

miniogre run

This will analyze the project, generate ogre_dir/Dockerfile, ogre_dir/requirements.txt, and ogre_dir/sbom.json and build a Docker image.

Commands

  • run: Executes a series of actions, including configuring directories and files (bashrc, Dockerfile), generating requirements, building a Docker image, and spinning up a container.
  • readme: Analyzes the source code to generate a new README.md file that reflects the actual operations in the source code.
  • eval: Determines the reproducibility score of the repository by evaluating the README quality.
  • spinup: Spins up a container if an image was previously built with the run command.
  • version: Displays the current version of miniogre.

Build Ogre base image

Useful to create a Docker image that can be deployed on Google Cloud Run:

miniogre build-ogre-image --host-platform linux/amd64 --baseimage ogrerun/base:ubuntu22.04-amd64 --verbose --no-cache

Contributing

Contributions to improve this resource are more than welcome. For inquiries, contact the maintainers at contact@ogre.run.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

miniogre-0.9.3.tar.gz (799.3 kB view details)

Uploaded Source

Built Distribution

miniogre-0.9.3-py3-none-any.whl (799.7 kB view details)

Uploaded Python 3

File details

Details for the file miniogre-0.9.3.tar.gz.

File metadata

  • Download URL: miniogre-0.9.3.tar.gz
  • Upload date:
  • Size: 799.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for miniogre-0.9.3.tar.gz
Algorithm Hash digest
SHA256 c3f237ed54c1caec95b5a806430028e26091819ee8b5d63e8563253ef536052e
MD5 3637218bc778880ae62266b536554fea
BLAKE2b-256 b06926f5e9f6456537f204d800cf7c24209071a5ef206c176049035713f39db7

See more details on using hashes here.

File details

Details for the file miniogre-0.9.3-py3-none-any.whl.

File metadata

  • Download URL: miniogre-0.9.3-py3-none-any.whl
  • Upload date:
  • Size: 799.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for miniogre-0.9.3-py3-none-any.whl
Algorithm Hash digest
SHA256 915d28d1a390e4844360f55f7f7c78f15ca1668d4d50dab63bdf89ecf45a6cfd
MD5 9360905e4ff44f914827e91f3ee8572c
BLAKE2b-256 7c10fc38a6fc1ff9a2233434e35a9cc886118c6e71b95e9f1a67328e3b86e695

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page