Skip to main content

A library to convert MiniSom models to ONNX format

Project description

minisom-onnx

PyPI version fury.io Downloads License - MIT Code style: black

minisom2onnx is a Python library for converting MiniSom models to ONNX (Open Neural Network Exchange) format, allowing for deployment in various environments. It provides flexibility to include additional information, such as quantization error thresholds and label mappings.

Features

  • Convert MiniSom models to ONNX format
  • Support for different distance functions
  • Optional quantization error thresholding (outlier detection)
  • Optional label mapping (classification)

Installation

You can install the library using pip:

pip install minisom2onnx

API

The to_onnx function converts a trained MiniSom model to an ONNX format.

Function Signature

to_onnx(
    model, 
    name: Optional[str] = None,
    description: Optional[str] = None,
    threshold: Optional[float] = None,
    labels: Optional[np.ndarray] = None,
    outputs: Optional[List[str]] = ['winner'],
    properties: Optional[Dict[str, str]] = {},
    opset: Optional[int] = 18,
) -> ModelProto

Parameters

  • model: The trained MiniSom model to be converted.
  • name: (Optional) A string specifying the name of the ONNX model. If not provided, a random uuid will be used.
  • description: (Optional) A textual description of the ONNX model's graph.
  • threshold: (Optional) A float value representing the threshold for quantization error. If provided, an additional node indicating whether the quantization error exceeds this threshold will be included in the ONNX model.
  • labels: (Optional) A 2D numpy array containing labels corresponding to the SOM grid. If provided, an additional node mapping the best matching unit (BMU) to a label will be included.
  • outputs: (Optional) A list of strings specifying the desired output names to include in the final model. The default value is ['winner'].
  • properties: (Optional) A dictionary of additional properties to include in the model's metadata.
  • opset: (Optional) An integer specifying the ONNX opset version to use. The default value is 18.

Outputs

By default, the following outputs are available:

  • weights: The original weights of the MiniSom model.
  • distance: The distance between each input sample and the weights vector of the winning neuron.
  • quantization: The code book BMU (weights vector of the winning neuron) for each sample in the data.
  • quantization_error: The quantization error, calculated as the distance between each input sample and its best matching unit.
  • winner: The coordinates of the BMU on the SOM grid.

Additional outputs are available based on the optional parameters:

  • outlier: A binary indicator of whether the quantization error exceeds the provided threshold. This output is only available if the threshold parameter is specified.
  • class: The label of the BMU. This output is only available if the labels parameter is provided.

NOTE: The MiniSom model supports several distance functions, including euclidean, cosine, manhattan, and chebyshev. However, the ONNX operator CDist currently has an implementation only for euclidean distance. As a result, while the model can be exported to ONNX successfully, onnxruntime will fail if a distance function other than euclidean (default) is used.

Additionally, MiniSom allows for custom distance functions. If a custom distance function is employed in the model, the to_onnx with throw an ValueError: Unsupported activation_distance

For reliable inference, it is recommended to use the euclidean distance function with your MiniSom model when exporting to ONNX.

Usage

Here’s a basic example of how to use minisom2onnx to convert a trained MiniSom model to ONNX format:

from minisom import MiniSom
import numpy as np
import random
from minisom2onnx import to_onnx

data = np.random.rand(100, 4)

# Create and train a MiniSom model
som = MiniSom(10, 10, data.shape[1], sigma=0.3, learning_rate=0.5)
som.random_weights_init(data)
som.train_random(data, 100)

# Convert the model to ONNX
onnx_model = to_onnx(som, name="SOMModel")

# Save the model
import onnx
onnx.save(onnx_model, 'som_model.onnx')

Using Labels

To include label information in your ONNX model, you can provide labels during conversion. Here’s an example:

from minisom import MiniSom
import numpy as np
import random
from minisom2onnx import to_onnx

dim = 10
data = np.random.rand(100, 4)
target = [random.randint(1, 2) for i in range(100)]

# Create and train a MiniSom model
som = MiniSom(dim, dim, data.shape[1], sigma=3, learning_rate=0.5, neighborhood_function='triangle', random_seed=10)
som.pca_weights_init(data)
som.train(data, 1000, random_order=True, use_epochs=True)

default_label = 0
labels = np.full((dim, dim), fill_value=default_label, dtype=int)
for position, counter in som.labels_map(data, target).items():
    labels[position] = max(counter, key=counter.get)

# Convert the model to ONNX
onnx_model = to_onnx(som, name="SOMClassifier", labels=labels, outputs=["class"])

# Save the model
import onnx
onnx.save(onnx_model, 'som_model.onnx')

Using Thresholding

If you want to include threshold-based outlier detection in your ONNX model, you can specify a threshold. Here’s how:

from minisom import MiniSom
import numpy as np
import random
from minisom2onnx import to_onnx

dim = 10
data = np.random.rand(100, 4)

# Create and train a MiniSom model
som = MiniSom(dim, dim, data.shape[1], sigma=3, learning_rate=0.5, neighborhood_function='triangle', random_seed=10)
som.train(data, 1000, random_order=True, use_epochs=True)

quantization_errors = np.array([som.quantization_error([x]) for x in data])
threshold = np.percentile(quantization_errors, 95)

# Convert the model to ONNX
onnx_model = to_onnx(som, name="SOMOutlier", threshold=threshold, outputs=["outlier"])

# Save the model
import onnx
onnx.save(onnx_model, 'som_model.onnx')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

minisom2onnx-0.1.0.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

minisom2onnx-0.1.0-py3-none-any.whl (8.4 kB view details)

Uploaded Python 3

File details

Details for the file minisom2onnx-0.1.0.tar.gz.

File metadata

  • Download URL: minisom2onnx-0.1.0.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for minisom2onnx-0.1.0.tar.gz
Algorithm Hash digest
SHA256 82fb0ddad2d83050b7b9f72f4a73a54140f60e716e595156f11db40f8dab83f2
MD5 d8e0cd2e7fcc21e1bc4035a19924dbe5
BLAKE2b-256 dbc37d9c14cd7d0e84e0404dcbbf1c126c08df768e1cdd0990d12e096c21d6a1

See more details on using hashes here.

File details

Details for the file minisom2onnx-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for minisom2onnx-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bc1dbb2cfe1f05dee1bc9b65b7a539e4141a11e52f89fd089c79436ad4fd8d07
MD5 d2a8da2375ec025a6527fa0d087fe42c
BLAKE2b-256 dd3b10bcff6dc58cc7baff7928618cfd44dd3d3fc7fbabd80d394e15ea0483c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page