`mip-tool` is a package for Python-MIP.
Project description
MIP-Tool
MIP-Tool is a package for Python-MIP.
Installation
pip install mip-tool
Example
Show/View model
from mip import Model, maximize
from mip_tool import show_model
m = Model()
x = m.add_var("x")
y = m.add_var("y")
m.objective = maximize(x + y)
m += x + 2 * y <= 16
m += 3 * x + y <= 18
show_model(m)
Output
\Problem name:
Minimize
OBJROW: - x - y
Subject To
constr(0): x + 2 y <= 16
constr(1): 3 x + y <= 18
Bounds
End
In Jupyter
from mip_tool.view import view_model
view_model(m)
Output
モデル | |||||
| |||||
| |||||
|
Non-convex piecewise linear constraint
Maximize y which is on points of (-2, 6), (-1, 7), (2, -2), (4, 5).
import numpy as np
from mip import INF, Model, OptimizationStatus
from mip_tool import add_lines, show_model
m = Model(solver_name="CBC")
x = m.add_var("x", lb=-INF)
y = m.add_var("y", obj=-1)
curve = np.array([[-2, 6], [-1, 7], [2, -2], [4, 5]])
add_lines(m, curve, x, y)
m.verbose = 0
m.optimize()
assert m.status == OptimizationStatus.OPTIMAL
assert (x.x, y.x) == (-1, 7)
show_model(m)
Output
\Problem name:
Minimize
OBJROW: - y
Subject To
constr(0): x - w_0 - w_1 - w_2 = -2
constr(1): y - w_0 + 3 w_1 -3.50000 w_2 = 6
constr(2): - w_0 + z_0 <= -0
constr(3): w_0 <= 1
constr(4): - w_1 + 3 z_1 <= -0
constr(5): w_1 -3 z_0 <= -0
constr(6): w_2 -2 z_1 <= -0
Bounds
x Free
0 <= z_0 <= 1
0 <= z_1 <= 1
Integers
z_0 z_1
End
F example
Easy to understand using F.
attention: Change Model and Var when using mip_tool.func.
from mip_tool.func import F
m = Model(solver_name="CBC")
x = m.add_var("x")
y = m.add_var("y", obj=-1)
m += y <= F([[0, 2], [1, 3], [2, 2]], x)
m.verbose = 0
m.optimize()
print(x.x, y.x) # 1.0 3.0
y <= F(curve, x)
andy >= F(curve, x)
calladd_lines_conv
.y == F(curve, x)
callsadd_lines
.
pandas.DataFrame example
attention: Change Series when using mip_tool.func.
import pandas as pd
from mip import Model, maximize, xsum
from mip_tool.func import addvars
A = pd.DataFrame([[1, 2], [3, 1]])
b = pd.Series([16, 18])
m = Model(solver_name="CBC")
x = addvars(m, A, "X", False)
m.objective = maximize(xsum(x))
m += A @ x <= b
m.verbose = 0
m.optimize()
print(x.astype(float)) # [4. 6.]
Expression m += A.T.apply(lambda row: xsum(row * x)) <= b
may be faster than m += A @ x <= b
.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
mip_tool-0.6.4-py3-none-any.whl
(12.6 kB
view details)
File details
Details for the file mip_tool-0.6.4-py3-none-any.whl
.
File metadata
- Download URL: mip_tool-0.6.4-py3-none-any.whl
- Upload date:
- Size: 12.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46ba8305aab80c73a339b84aea6da533a7f3a62171133c02ea203d440491a456 |
|
MD5 | 7222b4e51519bec98a4266d57d20e3ca |
|
BLAKE2b-256 | 799e3a42c00dd5a466cf5e295fe8fac413611796e2db1ad67e269435d426634d |