Skip to main content

`mip-tool` is a package for Python-MIP.

Project description

MIP-Tool

MIP-Tool is a package for Python-MIP.

Installation

pip install mip-tool

Example

Show/View model

from mip import Model, maximize
from mip_tool import show_model

m = Model()
x = m.add_var("x")
y = m.add_var("y")
m.objective = maximize(x + y)
m += x + 2 * y <= 16
m += 3 * x + y <= 18
show_model(m)

Output

\Problem name: 

Minimize
OBJROW: - x - y
Subject To
constr(0):  x + 2 y <= 16
constr(1):  3 x + y <= 18
Bounds
End

In Jupyter

from mip_tool.view import view_model

view_model(m)

Output

モデル
変数x :非負変数
y :非負変数
目的関数x + y → 最大化
制約条件x + 2.0y ≦ 16.0
3.0x + y ≦ 18.0

Non-convex piecewise linear constraint

Maximize y which is on points of (-2, 6), (-1, 7), (2, -2), (4, 5).

import numpy as np
from mip import INF, Model, OptimizationStatus
from mip_tool import add_lines, show_model

m = Model(solver_name="CBC")
x = m.add_var("x", lb=-INF)
y = m.add_var("y", obj=-1)
curve = np.array([[-2, 6], [-1, 7], [2, -2], [4, 5]])
add_lines(m, curve, x, y)
m.verbose = 0
m.optimize()
assert m.status == OptimizationStatus.OPTIMAL
assert (x.x, y.x) == (-1, 7)
show_model(m)

Output

\Problem name: 

Minimize
OBJROW: - y
Subject To
constr(0):  x - w_0 - w_1 - w_2 = -2
constr(1):  y - w_0 + 3 w_1 -3.50000 w_2 = 6
constr(2):  - w_0 + z_0 <= -0
constr(3):  w_0 <= 1
constr(4):  - w_1 + 3 z_1 <= -0
constr(5):  w_1 -3 z_0 <= -0
constr(6):  w_2 -2 z_1 <= -0
Bounds
 x Free
 0 <= z_0 <= 1
 0 <= z_1 <= 1
Integers
z_0 z_1 
End

F example

Easy to understand using F.

attention: Change Model and Var when using mip_tool.func.

from mip_tool.func import F

m = Model(solver_name="CBC")
x = m.add_var("x")
y = m.add_var("y", obj=-1)
m += y <= F([[0, 2], [1, 3], [2, 2]], x)
m.verbose = 0
m.optimize()
print(x.x, y.x)  # 1.0 3.0
  • y <= F(curve, x) and y >= F(curve, x) call add_lines_conv.
  • y == F(curve, x) calls add_lines.

pandas.DataFrame example

attention: Change Series when using mip_tool.func.

import pandas as pd
from mip import Model, maximize, xsum
from mip_tool.func import addvars

A = pd.DataFrame([[1, 2], [3, 1]])
b = pd.Series([16, 18])
m = Model(solver_name="CBC")
x = addvars(m, A, "X", False)
m.objective = maximize(xsum(x))
m += A @ x <= b
m.verbose = 0
m.optimize()
print(x.astype(float))  # [4. 6.]

Expression m += A.T.apply(lambda row: xsum(row * x)) <= b may be faster than m += A @ x <= b.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

mip_tool-0.6.4-py3-none-any.whl (12.6 kB view details)

Uploaded Python 3

File details

Details for the file mip_tool-0.6.4-py3-none-any.whl.

File metadata

  • Download URL: mip_tool-0.6.4-py3-none-any.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for mip_tool-0.6.4-py3-none-any.whl
Algorithm Hash digest
SHA256 46ba8305aab80c73a339b84aea6da533a7f3a62171133c02ea203d440491a456
MD5 7222b4e51519bec98a4266d57d20e3ca
BLAKE2b-256 799e3a42c00dd5a466cf5e295fe8fac413611796e2db1ad67e269435d426634d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page