Skip to main content

Microbe segmentation in dense colonies

Project description

MiSiC

Microbe segmentation in dense colonies.

Installation

Requires version python version 3.6/7

pip install misic

MiSiC as napari plugin

A napari plugin is up and running at the moment with a few glitches!

Here are the steps for installation:

  1. You can download napari at the bottom of the page at https://github.com/napari/napari/releases
  2. After you install napari, in the plugins tab > Install plugin > misic-napari
  3. Restart napari
  4. Drag and drop an image
  5. Go to segment More information is at https://pypi.org/project/misic-napari/

The plugin is still underdevelopment so there might be a few bugs that will be incrementally updated.

Possible errors during installtion

tensorflow dependecies may not be installed if pyparsing error pip install pyparsing if protobuf error conda install protobuf

Usage

use package

from misic.misic import *
from misic.extras import *
from skimage.io import imsave,imread
from skimage.transform import resize,rescale

filename = 'awesome_image.tif'

# read image using your favorite package
im = imread(filename)
sr,sc = im.shape

# Parameters that need to be changed
## Ideally, use a single image to fine tune two parameters : mean_width and noise_variance (optional)

#input the approximate mean width of microbe under consideration
standard_width = 9.7

# the approximate width of cells to be segmented
mean_width = 9.7

# If image is phase contrast light_background = True
light_background = True

# compute scaling factor
scale = (standard_width/mean_width)

# Initialize MiSiC
mseg = MiSiC()

# preprocess using inbuit function or if you are feeling lucky use your own preprocessing
# recomended preprcessing
# im = adjust_gamma(im,0.25)
# im = unsharp_mask(im,2.2,0.6)

# for fluorescence images
# im = gaussian(laplace(im),2.2)
# im = add_noise(im,0.1)
# OR
# im = random_noise(im,mode = 'gaussian',var = 0.1/100.0)

im = rescale(im,scale,preserve_range = True)

# add local noise
img = add_noise(im,sensitivity = 0.13,invert = light_background)

# segment
yp = mseg.segment(img,invert = light_background)
yp = resize(yp,(sr,sc))

# watershed based post processing (optional)
# yp = postprocess_ws(img,yp)
yp = postprocessing(im if light_background else -im,yp)[:,:,0]  

# save 8-bit segmented image and use it as you like
imsave('segmented.tif', ((yp > 0)*255).astype(np.uint8))
''''

### In case of gpu error, one might need to disabple gpu before importing MiSiC [ os.environ["CUDA_VISIBLE_DEVICES"]="-1" ]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

misic-1.1.5.tar.gz (6.8 MB view details)

Uploaded Source

Built Distribution

misic-1.1.5-py3-none-any.whl (6.8 MB view details)

Uploaded Python 3

File details

Details for the file misic-1.1.5.tar.gz.

File metadata

  • Download URL: misic-1.1.5.tar.gz
  • Upload date:
  • Size: 6.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for misic-1.1.5.tar.gz
Algorithm Hash digest
SHA256 aa14247bc3089bbdb700f1148836fb8f7d5a66fd0d1cd828a5eccae329fa0a69
MD5 7849c6f8c314f0ced241dfcf40f6c630
BLAKE2b-256 3940ab5474530e5f93791919ac9b07bb987bc5cf44f4280c4a284d3e4139feac

See more details on using hashes here.

File details

Details for the file misic-1.1.5-py3-none-any.whl.

File metadata

  • Download URL: misic-1.1.5-py3-none-any.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for misic-1.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 15998664bac2c320b423c29443169a69ba7e203082867889f8ee90f3ce45c73a
MD5 5e7da063afe5a4db9cdb5627f71109bc
BLAKE2b-256 119732d66925fc7020c7223ced30f951def094394dd96f646f2b06886eff3971

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page