Skip to main content

Microbe segmentation in dense colonies

Project description

MiSiC

Microbe segmentation in dense colonies.

Installation

Requires version python version 3.6/7

pip install MiSiC

Usage

use package

from MiSiC.MiSiC import *
from skimage.io import imsave,imread
from skimage.transform import resize,rescale

filename = 'awesome_image.tif'

# read image using your favorite package
im = imread(filename)

# Parameters that need to be changed
## Ideally, use a single image to fine tune two parameters : mean_width and noise_variance (optional)

#input the approximate mean width of microbe under consideration
mean_width = 8

# compute scaling factor
scale = (10/mean_width)

# Initialize MiSiC
misic = MiSiC()

# preprocess using inbuit function or if you are feeling lucky use your own preprocessing
im = rescale(im,scale,preserve_range = True)

# add local noise
img = add_noise(im,sensitivity = 0.13,invert = True)

# segment
yp = misic.segment(img,invert = True)
yp = resize(yp,[sr,sc,-1])

# watershed based post processing
yp = postprocess_ws(img,yp)

# save 8-bit segmented image and use it as you like
imsave('segmented.tif', yp.astype(np.uint8))
''''

### In case of gpu error, one might need to disabple gpu before importing MiSiC [ os.environ["CUDA_VISIBLE_DEVICES"]="-1" ]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MiSiC-1.0.10.tar.gz (4.9 kB view details)

Uploaded Source

Built Distribution

MiSiC-1.0.10-py3-none-any.whl (7.3 MB view details)

Uploaded Python 3

File details

Details for the file MiSiC-1.0.10.tar.gz.

File metadata

  • Download URL: MiSiC-1.0.10.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for MiSiC-1.0.10.tar.gz
Algorithm Hash digest
SHA256 86c102df96cffe9b7a187ff4a4808a09a45190e421a68851e78178b34873238f
MD5 7269203bbe326f3483a406faf83df3ab
BLAKE2b-256 ae1fde04b5b010fb3772a35976ac665cfa2789aaf85cd57772ae2744f83e8541

See more details on using hashes here.

File details

Details for the file MiSiC-1.0.10-py3-none-any.whl.

File metadata

  • Download URL: MiSiC-1.0.10-py3-none-any.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for MiSiC-1.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 1168958823890c973d725bdf82e8e8a19571837d7a5421436f63135d2930d9d3
MD5 56f5349d1d205eb733843bc0a43a070e
BLAKE2b-256 229bdfff27f79fbaf55fe0ce3288c9e0d1b89dd6ccb433168c9e6bbac6392a5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page