Skip to main content

Microbe segmentation in dense colonies

Project description

MiSiC

Microbe segmentation in dense colonies.

Installation

Requires version python version 3.6/7

pip install MiSiC

Usage

use package

from MiSiC.MiSiC import *
from skimage.io import imsave,imread
from skimage.transform import resize,rescale

filename = 'awesome_image.tif'

# read image using your favorite package
im = imread(filename)

# Parameters that need to be changed
## Ideally, use a single image to fine tune two parameters : mean_width and noise_variance (optional)

#input the approximate mean width of microbe under consideration
mean_width = 8

# compute scaling factor
scale = (10/mean_width)

# Initialize MiSiC
misic = MiSiC()

# preprocess using inbuit function or if you are feeling lucky use your own preprocessing
im = rescale(im,scale,preserve_range = True)

# add local noise
img = add_noise(im,sensitivity = 0.13,invert = True)

# segment
yp = misic.segment(img,invert = True)
yp = resize(yp,[sr,sc,-1])

# watershed based post processing
yp = postprocess_ws(img,yp)

# save 8-bit segmented image and use it as you like
imsave('segmented.tif', yp.astype(np.uint8))
''''

### In case of gpu error, one might need to disabple gpu before importing MiSiC [ os.environ["CUDA_VISIBLE_DEVICES"]="-1" ]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MiSiC-1.0.9.tar.gz (4.9 kB view details)

Uploaded Source

Built Distribution

MiSiC-1.0.9-py3-none-any.whl (7.3 MB view details)

Uploaded Python 3

File details

Details for the file MiSiC-1.0.9.tar.gz.

File metadata

  • Download URL: MiSiC-1.0.9.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for MiSiC-1.0.9.tar.gz
Algorithm Hash digest
SHA256 7624f692e9cd8388d300a84b1f2d8bb6ee19b28ed20818488a9db4827ed3445a
MD5 298c465362a29fe2ad2e838e17099604
BLAKE2b-256 e648f1127f088792fa2250805fb6e1bbaa942caa560684b045693fb9289e8c3b

See more details on using hashes here.

File details

Details for the file MiSiC-1.0.9-py3-none-any.whl.

File metadata

  • Download URL: MiSiC-1.0.9-py3-none-any.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for MiSiC-1.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 0f74c5061adec73839bbcdf9746ded390915fbb9b4d56e06f5e52640246632af
MD5 9e28ef127a2e01f05700b2dde19c2e4b
BLAKE2b-256 29198b95bf9489040a572b59dba065fa7514d2a4797bd00fc01e4b473cf13708

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page