Skip to main content

Microbe segmentation in dense colonies

Project description

MiSiC

Microbe segmentation in dense colonies.

Installation

Requires version python version 3.6/7

pip install misic

Usage

use package

from misic.misic import *
from skimage.io import imsave,imread
from skimage.transform import resize,rescale

filename = 'awesome_image.tif'

# read image using your favorite package
im = imread(filename)

# Parameters that need to be changed
## Ideally, use a single image to fine tune two parameters : mean_width and noise_variance (optional)

#input the approximate mean width of microbe under consideration
mean_width = 8

# compute scaling factor
scale = (10/mean_width)

# Initialize MiSiC
mseg = MiSiC()

# preprocess using inbuit function or if you are feeling lucky use your own preprocessing
im = rescale(im,scale,preserve_range = True)

# add local noise
img = add_noise(im,sensitivity = 0.13,invert = True)

# segment
yp = mseg.segment(img,invert = True)
yp = resize(yp,[sr,sc,-1])

# watershed based post processing
yp = postprocess_ws(img,yp)

# save 8-bit segmented image and use it as you like
imsave('segmented.tif', yp.astype(np.uint8))
''''

### In case of gpu error, one might need to disabple gpu before importing MiSiC [ os.environ["CUDA_VISIBLE_DEVICES"]="-1" ]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

misic-1.1.0.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

misic-1.1.0-py3-none-any.whl (7.3 MB view details)

Uploaded Python 3

File details

Details for the file misic-1.1.0.tar.gz.

File metadata

  • Download URL: misic-1.1.0.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for misic-1.1.0.tar.gz
Algorithm Hash digest
SHA256 18e3457b765e39670579d5a400b2c7442377a262fb7928aa8218f7aeec9857a4
MD5 0279524d2c969971a0b1004aeab6c358
BLAKE2b-256 cc5c29edfe9903751296fb29ed26773887a2354cd741d165719ab35c555f2b56

See more details on using hashes here.

File details

Details for the file misic-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: misic-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for misic-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a4c372040789940eaafb0d0aa8e88f87d0a8db4f7f595b1183ff1188d8bb3185
MD5 a5d4cae38bf7d6340ba136d0041bad29
BLAKE2b-256 7533fbfe0646d07fc8fbb98fa9b8b7d3d2e3c6e87d37130ec5cd19d99689efbd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page