Skip to main content

Microbe segmentation in dense colonies

Project description

MiSiC

Microbe segmentation in dense colonies.

Installation

Requires version python version 3.6/7

pip install misic

Usage

use package

from misic.misic import *
from skimage.io import imsave,imread
from skimage.transform import resize,rescale

filename = 'awesome_image.tif'

# read image using your favorite package
im = imread(filename)

# Parameters that need to be changed
## Ideally, use a single image to fine tune two parameters : mean_width and noise_variance (optional)

#input the approximate mean width of microbe under consideration
mean_width = 8

# compute scaling factor
scale = (10/mean_width)

# Initialize MiSiC
mseg = MiSiC()

# preprocess using inbuit function or if you are feeling lucky use your own preprocessing
im = rescale(im,scale,preserve_range = True)

# add local noise
img = add_noise(im,sensitivity = 0.13,invert = True)

# segment
yp = mseg.segment(img,invert = True)
yp = resize(yp,[sr,sc,-1])

# watershed based post processing
yp = postprocess_ws(img,yp)

# save 8-bit segmented image and use it as you like
imsave('segmented.tif', yp.astype(np.uint8))
''''

### In case of gpu error, one might need to disabple gpu before importing MiSiC [ os.environ["CUDA_VISIBLE_DEVICES"]="-1" ]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

misic-1.1.2.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

misic-1.1.2-py3-none-any.whl (7.3 MB view details)

Uploaded Python 3

File details

Details for the file misic-1.1.2.tar.gz.

File metadata

  • Download URL: misic-1.1.2.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for misic-1.1.2.tar.gz
Algorithm Hash digest
SHA256 1006cce4ff979cd29ffebd7c8c19b529c72d20706db44d7091262540bb8e9b32
MD5 a96b05be439b814035a50993c5654450
BLAKE2b-256 868c773b5f843c4912c52b8e85fbd9fa5bc2a80e81be701e36253edd2bee6920

See more details on using hashes here.

File details

Details for the file misic-1.1.2-py3-none-any.whl.

File metadata

  • Download URL: misic-1.1.2-py3-none-any.whl
  • Upload date:
  • Size: 7.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for misic-1.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8dd53430f37dfad8b72db72213f7152ffb66ccbb5b1f954210e310c566b0cade
MD5 37e737f47cfd56cb87a8d65fced6efcb
BLAKE2b-256 4ae2110096760297b525e2c3be5c6afbd582163476aa5316b46768aa5c9ebf56

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page