mispr contains FireWorks workflows for Materials Science
Project description
# <img alt=”mispr” src=”docs/logo.png” width=”500”>
[![Downloads](https://pepy.tech/badge/mispr)](https://pepy.tech/project/mispr) [![GitHub tag](https://img.shields.io/github/tag/molmd/mispr)](https://GitHub.com/molmd/mispr/tags/)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/8c047110974a42af9baed409664d2547)](https://www.codacy.com/gh/molmd/mispr/dashboard?utm_source=github.com&utm_medium=referral&utm_content=molmd/mispr&utm_campaign=Badge_Grade) ![Website](https://img.shields.io/website?down_message=down&label=mispr%20website&up_message=up&url=https%3A%2F%2Fmolmd.github.io%2Fmispr%2F) ![GitHub commit activity](https://img.shields.io/github/commit-activity/m/molmd/mispr)
Rasha Atwi, Matthew Bliss, and Nav Nidhi Rajput
Stony Brook University
## Overview MISPR is a software that executes, manages, and stores computational materials science simulations. It contains pre-defined density functional theory (DFT) and molecular dynamics (MD) workflows to calculate and analyze different properties of materials. MISPR uses [MDPropTools](https://github.com/molmd/mdproptools) to perform MD analysis.
## Installation You can either download the source from GitHub and compile yourself, or install directly using pip. Please see the [Installation](https://molmd.github.io/mispr/html/installation/index.html) page for detailed instructions.
## Useful Links - [MISPR Website](https://molmd.github.io/mispr/): Visit this site to get an overview of MISPR, check the installation instructions, and follow MISPR tutorials - [MISPR API Reference](https://molmd.github.io/mispr/html/py-modindex.html) - [Resources](https://molmd.github.io/mispr/html/resources/resources.html)
## How to cite Please include the following two citations if MISPR and/or MDPropTools were used for an academic study: - Atwi, R., Bliss, M., Makeev, M., & Rajput, N. N. (2022). [MISPR: An automated infrastructure for high-throughput DFT and MD simulations](https://www.nature.com/articles/s41598-022-20009-w). Scientific Reports, 12(1), 1-16. - Atwi, R., Chen, Y., Han, K. S., Mueller, K. T., Murugesan, V., & Rajput, N. N. (2022). [An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions](https://doi.org/10.1038/s43588-022-00200-9). Nature Computational Science, 2(2), 112-122.
## License Information MISPR is a free, open-source software package (distributed under the [MIT license](https://github.com/molmd/mispr/blob/master/LICENSE)).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mispr-0.0.4.tar.gz
.
File metadata
- Download URL: mispr-0.0.4.tar.gz
- Upload date:
- Size: 3.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0eaa995682dd64af3af059f6d54a1c497304a4e1d6bdc7c68863ef89e9b1e14d |
|
MD5 | 3c1b92cf208c6f4f27ddc669178f988b |
|
BLAKE2b-256 | 8decfec7587f33337359d9ee0d2d67f7d5d4934aab72198659eefb75be525ecf |
File details
Details for the file mispr-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: mispr-0.0.4-py3-none-any.whl
- Upload date:
- Size: 138.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ea6bf5c308d0e509a3fd6a26e3ec5d742fc8c1a3c054c46fa0b7e292dc25e8b |
|
MD5 | 91d3e0ec2cef3bc7b94e0d44de410f0d |
|
BLAKE2b-256 | ca580b4c64bdd7661bd47a4f73a5441509cabbad58ce9ef010980c17febab15d |