Python package to compute mutual information matrix
Project description
MISSO
Installation
- Using
pip
pip install misso
Note: In our benchmarks, multi-core version was always faster than the GPU accelerated version. So, we highly recommend installing just the CPU version and using multi-core computation.
- Installing from source
Usage
from misso import MISSO
For a more detailed usage, check out the Tutorials folder.
Benchmarks
** Benchmarks were run on a machine with the following configuration
CPU: 6 core Intel Core i7-8750H (-MT-MCP-) [12 core with Hyperthreading]
arch: Skylake rev.10 cache: 9216 KB
flags: (lm nx sse sse2 sse3 sse4_1 sse4_2 ssse3 vmx) bmips: 26399
clock speeds: max: 4100 MHz 1: 2479 MHz 2: 3013 MHz 3: 3211 MHz
4: 3098 MHz 5: 3362 MHz 6: 3769 MHz 7: 3082 MHz 8: 3290 MHz
9: 3090 MHz 10: 3141 MHz 11: 3055 MHz 12: 3650 MHz
Graphics: Card-1: Intel Device 3e9b bus-ID: 00:02.0
Card-2: NVIDIA Device 1f10 bus-ID: 01:00.0
Display Server: x11 (X.Org 1.19.6 )
drivers: modesetting,nvidia (unloaded: fbdev,vesa,nouveau)
Resolution: 3840x1600@59.99hz
OpenGL: renderer: GeForce RTX 2070 with Max-Q Design/PCIe/SSE2
version: 4.6.0 NVIDIA 440.100 Direct Render: Yes
License
TODO
- Try gradient-based solvers
- Conjugate-gradient descent
- Multi-processing for
lsmi
computation- Reduce interprocess overhead
- Try other methods to parallelize the code
- Benchmarks
- Multiprocessing
- GPU benchmarks
- Solver Benchmarks
- Run benchmarks on multiple machines and put in benchmark reports
- Detailed comparison with graphical Lasso (Tutorials)
- GPU Acceleration
- Use Cupy for solving
- Reduce GPU overhead
- Verify correctness (Still an issue)
- Try torch for GPU acceleration
- tqdm for Notebook and Script
- Pandas DataFrame support
- Packaging
- pip package
- Travis CI
- Readme
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
misso-0.1.tar.gz
(5.9 kB
view details)
Built Distribution
misso-0.1-py3-none-any.whl
(7.2 kB
view details)
File details
Details for the file misso-0.1.tar.gz
.
File metadata
- Download URL: misso-0.1.tar.gz
- Upload date:
- Size: 5.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.22.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74bdac98fbd103d1cfaf8b00425d8861295803db9b994fb586d6651288803982 |
|
MD5 | b93e7a8f33118e04ecc7e63684daa578 |
|
BLAKE2b-256 | f1fc4c0a18029bf99582b30a849b8f8ca10e8c90328741c6cbbc34ca3cab65ae |
File details
Details for the file misso-0.1-py3-none-any.whl
.
File metadata
- Download URL: misso-0.1-py3-none-any.whl
- Upload date:
- Size: 7.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.22.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 06a16d5d88093b3629206864d2d7941f890e70d8037f02dd2bed5e10d564eb57 |
|
MD5 | 93ee28dceb956ca986abdc8ca2e45ede |
|
BLAKE2b-256 | 38b65deaa20cf806454b77af573983a5ed302b47665cba5b6ca5b2640ec319f6 |