Skip to main content

MIST: an interpretable and flexible deep learning framework for single-T cell transcriptome and receptor analysis

Project description

MIST (Multi-InSight for T cell)

MIST: an interpretable and flexible deep learning framework for single-T cell transcriptome and receptor analysis

Installation

Install from PyPI

pip install mist-vae

Install from GitHub

install the latest develop version

pip install git+https://github.com/aapupu/MIST.git

or git clone and install

git clone git://github.com/aapupu/MIST.git
cd MIST
pip install -e .

Note: Python 3.8 is recommended. MIST is implemented in Pytorch framework. If cuda is available, GPU modes will be run automatically.

Usage

1. API function

from mist import MIST
adata, model = MIST(rna_path, tcr_path, batch, rna_data_type, tcr_data_type, type)

Parameters of API function are similar to command line options.
The output includes a trained model and an Anndata object, which can be further analyzed using scanpy and scirpy.
rna_path List of paths to scRNA-seq data files.
tcr_path List of paths to scTCR-seq data files.
batch List of batch labels.
rna_data_type Type of scRNA-seq data file (e.g., 'h5ad').
tcr_data_type Type of scTCR-seq data file (e.g., '10X').
type Type of model to train ('joint', 'rna', or 'tcr').

2. Command line

MIST --rna_path rna_path1 rna_path2 --tcr_path tcr_path1 tcr_path2 --batch batch1 batch2 --rna_data_type h5ad --tcr_data_type 10X --type joint

Output

  • adata.h5ad: preprocessed data and results
  • model.pt: saved model

Option

  • --rna_path
    Paths to scRNA-seq data files. (example: XXX1.h5ad XXX2.h5ad)
  • --tcr_path
    Paths to scTCR-seq data files. (example: XXX1.csv XXX2.csv)
  • --batch
    Batch labels.
  • --rna_data_type
    Type of scRNA-seq data file (e.g., 10X mtx, h5, or h5ad). Default: h5ad
  • --tcr_data_type
    Type of scTCR-seq data file (e.g., 10X, tracer, BD, or h5ad). Default: 10X
  • --protein_path
    Path to merged protein (ADT) data file.
  • --type
    Type of model to train (e.g., joint, rna, or tcr). Default: joint
  • --min_genes
    Filtered out cells that are detected in less than min_genes. Default: 600
  • --min_cells
    Filtered out genes that are detected in less than min_cells. Default: 3
  • --pct_mt
    Filtered out cells that are detected in more than percentage of mitochondrial genes. If None, Filtered out mitochondrial genes. Default: None
  • --n_top_genes
    Number of highly-variable genes to keep. Default: 2000
  • --batch_size
    Batch size for training. Default: 128
  • --pooling_dims
    Dimensionality of pooling layer. Default: 16
  • --z_dims
    Dimensionality of latent space. If type='rna', z_dims=pooling_dims. Default: 128
  • --drop_prob
    Dropout probability. Default: 0.1
  • --lr
    Learning rate for the optimizer. Default: 1e-4
  • --weight_decay
    L2 regularization strength. Default: 1e-3
  • --max_epoch
    Maximum number of epochs. Default: 300
  • --patience
    Patience for early stopping. Default: 30
  • --warmup
    Warmup epochs. Default: 30
  • --gpu
    Index of GPU to use if GPU is available. Default: 0
  • --seed
    Random seed. Default: 42
  • --outdir
    Output directory.

Help

Explore further applications of MIST

MIST.py --help 

The running examples of MIST can be found in the jupyter folder.

Citation

MIST: an interpretable and flexible deep learning framework for single-T cell transcriptome and receptor analysis
Wenpu Lai, Yangqiu Li, Oscar Junhong Luo
bioRxiv 2024.07.05.602192; doi: https://doi.org/10.1101/2024.07.05.602192

Contacts

kyzy850520@163.com
luojh@jnu.edu.cn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mist_vae-1.0.0.tar.gz (59.2 kB view details)

Uploaded Source

Built Distribution

mist_vae-1.0.0-py3-none-any.whl (47.5 kB view details)

Uploaded Python 3

File details

Details for the file mist_vae-1.0.0.tar.gz.

File metadata

  • Download URL: mist_vae-1.0.0.tar.gz
  • Upload date:
  • Size: 59.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for mist_vae-1.0.0.tar.gz
Algorithm Hash digest
SHA256 6a138793a645c07782ac5182f7b3c74c239196354a6999757842bd6e1597203f
MD5 69de0d1bd05a574af9c27e10c5b3f043
BLAKE2b-256 3bdb751ee1fdfb758f38c5199fae5f5c066e8e3f76bbf54e9ddd1eb69218ad2f

See more details on using hashes here.

File details

Details for the file mist_vae-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: mist_vae-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 47.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for mist_vae-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e968d654b22a8be79f695c6036716d60ff40445167b7802240bcf838283c3078
MD5 90755985ddb6ea907ecd808d71e82b95
BLAKE2b-256 7c7891d3c083a4993c6859a6ec9d04e12a83d4c5381c0d70d6cb9853e4670372

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page