Skip to main content

No project description provided

Project description

Mistral Common

What is it?

mistral-common is a set of tools to help you work with Mistral models.

Our first release contains tokenization. Our tokenizers go beyond the usual text <-> tokens, adding parsing of tools and structured conversation. We also release the validation and normalization code that is used in our API.

We are releasing three versions of our tokenizer powering different sets of models.

Open Model Tokenizer
Mistral 7B Instruct v0.1 v1
Mistral 7B Instruct v0.2 v1
Mistral 7B Instruct v0.3 v3
Mixtral 8x7B Instruct v0.1 v1
Mixtral 8x22B Instruct v0.1 v3
Mixtral 8x22B Instruct v0.3 v3
Codestral 22B v0.1 v3
Endpoint Model Tokenizer
mistral-embed v1
open-mistral-7b v3
open-mixtral-8x7b v1
open-mixtral-8x22b v3
mistral-small-latest v2
mistral-large-latest v2
codestral-22b v3

Installation

pip

You can install mistral-common via pip:

pip install mistral-common

From Source

Alternatively, you can install from source directly. This repo uses poetry as a dependency and virtual environment manager.

You can install poetry with

pip install poetry

poetry will set up a virtual environment and install dependencies with the following command:

poetry install

Examples

Open In Colab
# Import needed packages:
from mistral_common.protocol.instruct.messages import (
    UserMessage,
)
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.protocol.instruct.tool_calls import (
    Function,
    Tool,
)
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer

# Load Mistral tokenizer

model_name = "open-mixtral-8x22b"

tokenizer = MistralTokenizer.from_model(model_name)

# Tokenize a list of messages
tokenized = tokenizer.encode_chat_completion(
    ChatCompletionRequest(
        tools=[
            Tool(
                function=Function(
                    name="get_current_weather",
                    description="Get the current weather",
                    parameters={
                        "type": "object",
                        "properties": {
                            "location": {
                                "type": "string",
                                "description": "The city and state, e.g. San Francisco, CA",
                            },
                            "format": {
                                "type": "string",
                                "enum": ["celsius", "fahrenheit"],
                                "description": "The temperature unit to use. Infer this from the users location.",
                            },
                        },
                        "required": ["location", "format"],
                    },
                )
            )
        ],
        messages=[
            UserMessage(content="What's the weather like today in Paris"),
        ],
        model=model_name,
    )
)
tokens, text = tokenized.tokens, tokenized.text

# Count the number of tokens
print(len(tokens))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mistral_common-1.3.1.tar.gz (3.2 MB view details)

Uploaded Source

Built Distribution

mistral_common-1.3.1-py3-none-any.whl (3.3 MB view details)

Uploaded Python 3

File details

Details for the file mistral_common-1.3.1.tar.gz.

File metadata

  • Download URL: mistral_common-1.3.1.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.13

File hashes

Hashes for mistral_common-1.3.1.tar.gz
Algorithm Hash digest
SHA256 0df0aa4261099fed7eb8159e93cb17f5c6b0f130dab823cd8d6dbefe2de0a39d
MD5 b17b9d58011534133ba115c86ecf1a39
BLAKE2b-256 a1588b19960d4d2aca244913a6ebdaede91e93b60d5d5a6d866e49075c4e6b7f

See more details on using hashes here.

File details

Details for the file mistral_common-1.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for mistral_common-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3c948c5c709733d48478791cadf0005f99f79038ca4d06818c6f396d954d4de8
MD5 93a6ee7514234255194c7db3a094974f
BLAKE2b-256 93860d348bdee870d53cd9c4a7bbbf949b746494a92d5a53fe05ef5633342b18

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page