Skip to main content

MixNet: Joining Force of Classical and Modern Approaches toward The Comprehensive Pipeline in Motor Imagery EEG Classification

Project description

MixNet: Joining Force of Classical and Modern Approaches toward The Comprehensive Pipeline in Motor Imagery EEG Classification

Pypi Downloads DOI ARCHFIG

Python API and the novel algorithm for motor imagery EEG classification named MixNet. The API benefits BCI researchers ranging from beginners to experts. We demonstrate examples of using the API for loading six benchmark datasets, preprocessing, training, and validating SOTA models, including MixNet. In summary, the API allows the researchers to construct the pipeline to benchmark the newly proposed and recently developed SOTA models.


Getting started

Dependencies

  • Python==3.8.10
  • tensorflow-gpu==2.7.0
  • tensorflow-addons==0.16.1
  • scikit-learn>=1.2.2
  • wget>=3.2
  • h5py==3.5.0
  • pandas>=2.0
  1. Create docker container with dependencies
docker pull tensorflow/tensorflow:2.7.0-gpu
docker run -ti --name mixnet_container docker.io/tensorflow/tensorflow:2.7.0-gpu bash
wget https://github.com/Max-Phairot-A/MixNet/blob/main/requirement.txt
pip install -r requirements.txt

Installation:

  1. Using pip
pip install mixnet-bci
  1. Using the released python wheel
wget https://github.com/Max-Phairot-A/MixNet/releases/tag/v1.0.0/mixnet_bci-1.0.0-py3-none-any.whl
pip install mixnet_bci-1.0.0-py3-none-any.whl

Citation

To read & cite our paper

P. Autthasan, R. Chaisaen, H. Phan, M. D. Vos and T. Wilaiprasitporn, "MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification," in IEEE Internet of Things Journal, vol. 11, no. 17, pp. 28539-28554, 1 Sept.1, 2024, doi: 10.1109/JIOT.2024.3402254.

@ARTICLE{10533256,
  author={Autthasan, Phairot and Chaisaen, Rattanaphon and Phan, Huy and Vos, Maarten De and Wilaiprasitporn, Theerawit},
  journal={IEEE Internet of Things Journal}, 
  title={MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification}, 
  year={2024},
  volume={11},
  number={17},
  pages={28539-28554},
  keywords={Electroencephalography;Task analysis;Feature extraction;Measurement;Internet of Things;Multitasking;Motors;Adaptive gradient blending;brain-computer interface (BCI);deep learning (DL);motor imagery (MI);multitask learning},
  doi={10.1109/JIOT.2024.3402254}}

License

Copyright © 2021-All rights reserved by INTERFACES (BRAIN lab @ IST, VISTEC, Thailand). Distributed by an Apache License 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mixnet-bci-1.0.0.tar.gz (51.7 kB view details)

Uploaded Source

Built Distribution

mixnet_bci-1.0.0-py3-none-any.whl (98.6 kB view details)

Uploaded Python 3

File details

Details for the file mixnet-bci-1.0.0.tar.gz.

File metadata

  • Download URL: mixnet-bci-1.0.0.tar.gz
  • Upload date:
  • Size: 51.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.10.0 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.19 tqdm/4.46.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.9

File hashes

Hashes for mixnet-bci-1.0.0.tar.gz
Algorithm Hash digest
SHA256 405dc1fa073ab76d21e5a408d322cd9b267d93fbc55f7137982f904433ac6aba
MD5 b32a636c30f41b510863d0fb774dfb67
BLAKE2b-256 f8cc8c55bb76fd9b430a9ed80f95c07a2caeab371a35c6bba080de11b2f333ab

See more details on using hashes here.

File details

Details for the file mixnet_bci-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: mixnet_bci-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 98.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.10.0 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.19 tqdm/4.46.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.9

File hashes

Hashes for mixnet_bci-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cace5fa015d49d6e63609ee02d98e830812109109d599edc1cccbc8c72d41729
MD5 98f1d4f71ded401964e3561ed1ceddde
BLAKE2b-256 1c528bd197151c06a4bc598fca6fc249b016c22cf6ff1f09b894bd38d1097e89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page