MixNet: Joining Force of Classical and Modern Approaches toward The Comprehensive Pipeline in Motor Imagery EEG Classification
Project description
MixNet: Joining Force of Classical and Modern Approaches toward The Comprehensive Pipeline in Motor Imagery EEG Classification
Python API and the novel algorithm for motor imagery EEG classification named MixNet. The API benefits BCI researchers ranging from beginners to experts. We demonstrate examples of using the API for loading six benchmark datasets, preprocessing, training, and validating SOTA models, including MixNet. In summary, the API allows the researchers to construct the pipeline to benchmark the newly proposed and recently developed SOTA models.
- Website: https://max-phairot-a.github.io/mixnet.github.io
- Documentation: https://max-phairot-a.github.io/mixnet.github.io
- Source code: https://github.com/Max-Phairot-A/MixNet
- Bug reports: https://github.com/Max-Phairot-A/MixNet/issues
Getting started
Dependencies
- Python==3.8.10
- tensorflow-gpu==2.7.0
- tensorflow-addons==0.16.1
- scikit-learn>=1.2.2
- wget>=3.2
- h5py==3.5.0
- pandas>=2.0
- Create
docker container
with dependencies
docker pull tensorflow/tensorflow:2.7.0-gpu
docker run -ti --name mixnet_container docker.io/tensorflow/tensorflow:2.7.0-gpu bash
wget https://github.com/Max-Phairot-A/MixNet/blob/main/requirement.txt
pip install -r requirements.txt
Installation:
- Using pip
pip install mixnet-bci
- Using the released python wheel
wget https://github.com/Max-Phairot-A/MixNet/releases/tag/v1.0.0/mixnet_bci-1.0.0-py3-none-any.whl
pip install mixnet_bci-1.0.0-py3-none-any.whl
Citation
To read & cite our paper
P. Autthasan, R. Chaisaen, H. Phan, M. D. Vos and T. Wilaiprasitporn, "MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification," in IEEE Internet of Things Journal, vol. 11, no. 17, pp. 28539-28554, 1 Sept.1, 2024, doi: 10.1109/JIOT.2024.3402254.
@ARTICLE{10533256,
author={Autthasan, Phairot and Chaisaen, Rattanaphon and Phan, Huy and Vos, Maarten De and Wilaiprasitporn, Theerawit},
journal={IEEE Internet of Things Journal},
title={MixNet: Joining Force of Classical and Modern Approaches Toward the Comprehensive Pipeline in Motor Imagery EEG Classification},
year={2024},
volume={11},
number={17},
pages={28539-28554},
keywords={Electroencephalography;Task analysis;Feature extraction;Measurement;Internet of Things;Multitasking;Motors;Adaptive gradient blending;brain-computer interface (BCI);deep learning (DL);motor imagery (MI);multitask learning},
doi={10.1109/JIOT.2024.3402254}}
License
Copyright © 2021-All rights reserved by INTERFACES (BRAIN lab @ IST, VISTEC, Thailand). Distributed by an Apache License 2.0.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mixnet-bci-1.0.0.tar.gz
.
File metadata
- Download URL: mixnet-bci-1.0.0.tar.gz
- Upload date:
- Size: 51.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.10.0 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.19 tqdm/4.46.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 405dc1fa073ab76d21e5a408d322cd9b267d93fbc55f7137982f904433ac6aba |
|
MD5 | b32a636c30f41b510863d0fb774dfb67 |
|
BLAKE2b-256 | f8cc8c55bb76fd9b430a9ed80f95c07a2caeab371a35c6bba080de11b2f333ab |
File details
Details for the file mixnet_bci-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: mixnet_bci-1.0.0-py3-none-any.whl
- Upload date:
- Size: 98.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.10.0 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.19 tqdm/4.46.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cace5fa015d49d6e63609ee02d98e830812109109d599edc1cccbc8c72d41729 |
|
MD5 | 98f1d4f71ded401964e3561ed1ceddde |
|
BLAKE2b-256 | 1c528bd197151c06a4bc598fca6fc249b016c22cf6ff1f09b894bd38d1097e89 |