A versatile tool for calculating scattering functions of particle mixtures, particularly for small-angle scattering (SAS) or static and dynamic light scattering (SLS & DLS) applications.
Project description
mixscatter
Table of Contents
Overview
mixscatter is a pure python package for the calculation of scattering functions of multi-component mixtures of interacting spherical scatterers in the Born approximation (Rayleigh-Gans-Debye scattering).
Key Features:
- Calculation of scattering amplitudes, measurable intensities, form factors, structure factors, and diffusion coefficients.
- Flexible construction of systems with arbitrary compositions and complex scattering length density profiles.
- Suitable for researchers and developers working on particulate systems characterization.
Take a look at these publications if you are interested:
- P. Salgi and R. Rajagopalan, "Polydispersity in colloids: implications to static structure and scattering", Adv. Colloid Interface Sci. 43, 169-288 (1993)
- A. Vrij, "Mixtures of hard spheres in the Percus–Yevick approximation. Light scattering at finite angles", J. Chem. Phys. 71, 3267-3270 (1979)
- R. Botet, S. Kwok and B. Cabane, "Percus-Yevick structure factors made simple", J. Appl. Cryst. 53, 1570-1582 (2020)
- J. Diaz Maier, K. Gaus and J. Wagner, "Measurable structure factors of dense dispersions containing polydisperse, optically inhomogeneous particles", arXiv:2404.03470 [cond-mat.soft]
Installation
mixscatter is available on the Python Package Index (PyPI).
Prerequisites
Ensure you have Python 3.10 or higher installed.
Using pip
Install the package via pip:
pip install mixscatter
The source code is currently hosted on GitHub at: https://github.com/joelmaier/mixscatter
Documentation
Find the documentation on GitHub Pages: https://joelmaier.github.io/mixscatter/
Example Showcase
This example demonstrates the fundamental capabilities of mixscatter. For a comprehensive walk-through, refer to the Getting Started Guide.
Run this code to produce the figure below.
import numpy as np
import matplotlib.pyplot as plt
from mixscatter.mixture import Mixture
from mixscatter.scatteringmodel import SimpleCoreShell
from mixscatter.liquidstructure import PercusYevick
from mixscatter import (
measurable_intensity,
measurable_structure_factor,
measurable_diffusion_coefficient
)
if __name__ == "__main__":
plt.ion()
plt.close("all")
fig, ax = plt.subplots(3, 2, figsize=(6, 8), layout="constrained")
# Initialize a particle mixture
mixture = Mixture(radius=[100, 250], number_fraction=[0.4, 0.6])
# Visualize mixture composition
ax[0, 0].stem(mixture.radius, mixture.number_fraction)
ax[0, 0].set_xlim(0, 300)
ax[0, 0].set_ylim(-0.05, 1.05)
ax[0, 0].set_xlabel("particle radius")
ax[0, 0].set_ylabel("number fraction")
# Provide a model for the optical properties of the system
wavevector = np.linspace(1e-3, 7e-2, 1000)
scattering_model = SimpleCoreShell(
wavevector=wavevector,
mixture=mixture,
core_to_total_ratio=0.5,
core_contrast=1.0,
shell_contrast=0.5
)
# Visualize SLD profile
distance = np.linspace(0, 350, 1000)
for i, particle in enumerate(scattering_model.particles):
profile = particle.get_profile(distance)
ax[0, 1].plot(distance, profile, label=f"particle {i + 1}")
ax[0, 1].set_xlim(0, 400)
ax[0, 1].set_xlabel("distance from particle center")
ax[0, 1].set_ylabel("scattering contrast")
ax[0, 1].legend()
# Visualize individual and average form factor(s)
for i, form_factor in enumerate(scattering_model.single_form_factor):
ax[1, 0].plot(wavevector, form_factor, label=f"particle {i + 1}")
ax[1, 0].plot(
wavevector, scattering_model.average_form_factor, label="average"
)
ax[1, 0].set_yscale("log")
ax[1, 0].set_ylim(1e-6, 3e0)
ax[1, 0].legend()
ax[1, 0].set_xlabel("wavevector")
ax[1, 0].set_ylabel("form factor")
# Provide a model for the liquid structure
liquid_structure = PercusYevick(
wavevector=wavevector, mixture=mixture, volume_fraction_total=0.45
)
# Calculate the scattered intensity of the system
intensity = measurable_intensity(liquid_structure, scattering_model)
ax[1, 1].plot(wavevector, intensity)
ax[1, 1].set_yscale("log")
ax[1, 1].set_xlabel("wavevector")
ax[1, 1].set_ylabel("intensity")
# Calculate the experimentally obtainable, measurable structure factor
structure_factor = measurable_structure_factor(
liquid_structure, scattering_model
)
ax[2, 0].plot(wavevector, structure_factor)
ax[2, 0].set_xlabel("wavevector")
ax[2, 0].set_ylabel("structure factor")
# Calculate the effective Stokes-Einstein diffusion coefficient
# which would be obtained from a cumulant analysis in
# dynamic light scattering
diffusion_coefficient = measurable_diffusion_coefficient(
scattering_model, thermal_energy=1.0, viscosity=1.0 / (6.0 * np.pi)
)
# Visualize the apparent hydrodynamic radius, which is
# proportional to 1/diffusion_coefficient
ax[2, 1].plot(wavevector, 1 / diffusion_coefficient)
ax[2, 1].set_xlabel("wavevector")
ax[2, 1].set_ylabel("apparent hydrodynamic radius")
fig.savefig("simple_example_figure.png", dpi=300)
Contributing
Contributions are welcome! If you find any bugs or want to request features, feel free to get in touch or create an issue.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mixscatter-0.2.3.tar.gz
.
File metadata
- Download URL: mixscatter-0.2.3.tar.gz
- Upload date:
- Size: 25.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd59c0b2303cd019bff693d9ab4885d549daefdd54b01663edefabe277c1656d |
|
MD5 | 096cb156836e6c0aa5e6e7cde45e30b2 |
|
BLAKE2b-256 | 036d5ac61eee8e6c132bf57ced8ae3b2da5f6f58acfb5beac7a38b8c3753ca82 |
File details
Details for the file mixscatter-0.2.3-py3-none-any.whl
.
File metadata
- Download URL: mixscatter-0.2.3-py3-none-any.whl
- Upload date:
- Size: 21.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | de6fa5766bba96c74689ba6ab9c59cc1c8e431a2112793e1fdbebfa11fb4cb4a |
|
MD5 | deb4a6be257b521037aad0e38edbcd9a |
|
BLAKE2b-256 | 835322863013b8a1798fed117dead7afc13a93f9b583c241f52698e619589c00 |