Skip to main content

A versatile tool for calculating scattering functions of particle mixtures, particularly for small-angle scattering (SAS) or static and dynamic light scattering (SLS & DLS) applications.

Project description

mixscatter

Python PyPI License: MIT Test Lint Type Check Docs Nox

Table of Contents

Overview

mixscatter is a pure python package for the calculation of scattering functions of multi-component mixtures of interacting spherical scatterers in the Born approximation (Rayleigh-Gans-Debye scattering).

Key Features:

  • Calculation of scattering amplitudes, measurable intensities, form factors, structure factors, and diffusion coefficients.
  • Flexible construction of systems with arbitrary compositions and complex scattering length density profiles.
  • Suitable for researchers and developers working on particulate systems characterization.

Take a look at these publications if you are interested:

Installation

mixscatter is available on the Python Package Index (PyPI).

Prerequisites

Ensure you have Python 3.10 or higher installed.

Using pip

Install the package via pip:

pip install mixscatter

The source code is currently hosted on GitHub at: https://github.com/joelmaier/mixscatter

Documentation

Find the documentation on GitHub Pages: https://joelmaier.github.io/mixscatter/

Example Showcase

This example demonstrates the fundamental capabilities of mixscatter. For a comprehensive walk-through, refer to the Getting Started Guide.

Run this code to produce the figure below.

import numpy as np
import matplotlib.pyplot as plt

from mixscatter.mixture import Mixture
from mixscatter.scatteringmodel import SimpleCoreShell
from mixscatter.liquidstructure import PercusYevick
from mixscatter import (
    measurable_intensity,
    measurable_structure_factor,
    measurable_diffusion_coefficient
)

if __name__ == "__main__":
    plt.ion()
    plt.close("all")
    fig, ax = plt.subplots(3, 2, figsize=(6, 8), layout="constrained")

    # Initialize a particle mixture
    mixture = Mixture(radius=[100, 250], number_fraction=[0.4, 0.6])

    # Visualize mixture composition
    ax[0, 0].stem(mixture.radius, mixture.number_fraction)
    ax[0, 0].set_xlim(0, 300)
    ax[0, 0].set_ylim(-0.05, 1.05)
    ax[0, 0].set_xlabel("particle radius")
    ax[0, 0].set_ylabel("number fraction")

    # Provide a model for the optical properties of the system
    wavevector = np.linspace(1e-3, 7e-2, 1000)
    scattering_model = SimpleCoreShell(
        wavevector=wavevector,
        mixture=mixture,
        core_to_total_ratio=0.5,
        core_contrast=1.0,
        shell_contrast=0.5
    )

    # Visualize SLD profile
    distance = np.linspace(0, 350, 1000)
    for i, particle in enumerate(scattering_model.particles):
        profile = particle.get_profile(distance)
        ax[0, 1].plot(distance, profile, label=f"particle {i + 1}")
    ax[0, 1].set_xlim(0, 400)
    ax[0, 1].set_xlabel("distance from particle center")
    ax[0, 1].set_ylabel("scattering contrast")
    ax[0, 1].legend()

    # Visualize individual and average form factor(s)
    for i, form_factor in enumerate(scattering_model.single_form_factor):
        ax[1, 0].plot(wavevector, form_factor, label=f"particle {i + 1}")
    ax[1, 0].plot(
        wavevector, scattering_model.average_form_factor, label="average"
    )
    ax[1, 0].set_yscale("log")
    ax[1, 0].set_ylim(1e-6, 3e0)
    ax[1, 0].legend()
    ax[1, 0].set_xlabel("wavevector")
    ax[1, 0].set_ylabel("form factor")

    # Provide a model for the liquid structure
    liquid_structure = PercusYevick(
        wavevector=wavevector, mixture=mixture, volume_fraction_total=0.45
    )

    # Calculate the scattered intensity of the system
    intensity = measurable_intensity(liquid_structure, scattering_model)
    ax[1, 1].plot(wavevector, intensity)
    ax[1, 1].set_yscale("log")
    ax[1, 1].set_xlabel("wavevector")
    ax[1, 1].set_ylabel("intensity")

    # Calculate the experimentally obtainable, measurable structure factor
    structure_factor = measurable_structure_factor(
        liquid_structure, scattering_model
    )
    ax[2, 0].plot(wavevector, structure_factor)
    ax[2, 0].set_xlabel("wavevector")
    ax[2, 0].set_ylabel("structure factor")

    # Calculate the effective Stokes-Einstein diffusion coefficient
    # which would be obtained from a cumulant analysis in
    # dynamic light scattering
    diffusion_coefficient = measurable_diffusion_coefficient(
        scattering_model, thermal_energy=1.0, viscosity=1.0 / (6.0 * np.pi)
    )
    # Visualize the apparent hydrodynamic radius, which is
    # proportional to 1/diffusion_coefficient
    ax[2, 1].plot(wavevector, 1 / diffusion_coefficient)
    ax[2, 1].set_xlabel("wavevector")
    ax[2, 1].set_ylabel("apparent hydrodynamic radius")

    fig.savefig("simple_example_figure.png", dpi=300)

Example Figure

Contributing

Contributions are welcome! If you find any bugs or want to request features, feel free to get in touch or create an issue.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mixscatter-0.2.3.tar.gz (25.3 kB view details)

Uploaded Source

Built Distribution

mixscatter-0.2.3-py3-none-any.whl (21.4 kB view details)

Uploaded Python 3

File details

Details for the file mixscatter-0.2.3.tar.gz.

File metadata

  • Download URL: mixscatter-0.2.3.tar.gz
  • Upload date:
  • Size: 25.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for mixscatter-0.2.3.tar.gz
Algorithm Hash digest
SHA256 fd59c0b2303cd019bff693d9ab4885d549daefdd54b01663edefabe277c1656d
MD5 096cb156836e6c0aa5e6e7cde45e30b2
BLAKE2b-256 036d5ac61eee8e6c132bf57ced8ae3b2da5f6f58acfb5beac7a38b8c3753ca82

See more details on using hashes here.

File details

Details for the file mixscatter-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: mixscatter-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 21.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for mixscatter-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 de6fa5766bba96c74689ba6ab9c59cc1c8e431a2112793e1fdbebfa11fb4cb4a
MD5 deb4a6be257b521037aad0e38edbcd9a
BLAKE2b-256 835322863013b8a1798fed117dead7afc13a93f9b583c241f52698e619589c00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page