Skip to main content

No project description provided

Project description

MixtureMapping

Documentation PyPI version

Train Gaussian Mixture Mappings

Provides:

  1. Layers to build tensorflow models to map Gaussian mixtures
  2. Tools to compute yield values of Gaussian mixtures in complex binning schemes

Example

import mixturemapping as mm  
import tensorflow as tf

inMeans = tf.keras.Input(shape=(mixN, inputMixM), name="Means", dtype=dataType)
inStdDevs = tf.keras.Input(shape=(mixN, inputMixM), name="StdDevs", dtype=dataType)
inWeight = tf.keras.Input(shape=(mixN), name="Weights", dtype=dataType)

mapModel = tf.keras.Sequential()
mapModel.add( tf.keras.layers.Dense(40, activation="relu", kernel_regularizer=regularizers.l2(0.001)) )
mapModel.add( tf.keras.layers.Dense(40, activation="relu", kernel_regularizer=regularizers.l2(0.001)) )
mapModel.add( tf.keras.layers.Dense(outputMixM))
y = mapModel(inMeans)

deltaModel = tf.keras.Sequential()
deltaModel.add( tf.keras.layers.Dense(40, activation="relu", kernel_regularizer=regularizers.l2(0.001)) )
deltaModel.add( tf.keras.layers.Dense(40, activation="relu", kernel_regularizer=regularizers.l2(0.001)) )
deltaModel.add( tf.keras.layers.Dense(outputMixM))
yDelta = deltaModel(inMeans)

covALayer = mm.layers.TrainableCovMatrix(outputMixM, name="CovA")
covA = covALayer(inMeans)

mapLayer = mm.layers.GeneralMapping(outputMixM, name="Mapping", dtype=dataType)
newDist = mapLayer({'means': inMeans, 'y':y, 'yDelta':yDelta, 'stdDevs': inStdDevs, 'weights': inWeight, 'covA': covA})

distLayer = mm.layers.Distribution(dtype=dataType, regularize_cov_epsilon=0.95)
dist = distLayer(newDist)

Developement

$ py -m venv env
$ .\env\Scripts\activate
$ pip install -r requirements.txt

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mixturemapping-0.5.5-py311-none-any.whl (21.5 kB view details)

Uploaded Python 3.11

mixturemapping-0.5.5-py310-none-any.whl (21.5 kB view details)

Uploaded Python 3.10

mixturemapping-0.5.5-py39-none-any.whl (21.5 kB view details)

Uploaded Python 3.9

File details

Details for the file mixturemapping-0.5.5-py311-none-any.whl.

File metadata

File hashes

Hashes for mixturemapping-0.5.5-py311-none-any.whl
Algorithm Hash digest
SHA256 9bbdc6c5a8e369ea3e1163d36cca64fb45e52e02a3c0e78d80e9a5e7f453c0d5
MD5 691e5d8b23bce5bf029420571cd62315
BLAKE2b-256 ab138a434f90f9dbd8b0375133eaa7bd9e5881698094866ff260059d432ea046

See more details on using hashes here.

File details

Details for the file mixturemapping-0.5.5-py310-none-any.whl.

File metadata

File hashes

Hashes for mixturemapping-0.5.5-py310-none-any.whl
Algorithm Hash digest
SHA256 688f513978677fa5955cdc5cce11ca7db54b8617cc482d4fe0dc5de0f0d5d098
MD5 a3d0cf6f97f9150137f0e21dffeb63a0
BLAKE2b-256 518b475061f4f429422f8692cb5bc153f4e6c01a9330e7eb1a011636de691caa

See more details on using hashes here.

File details

Details for the file mixturemapping-0.5.5-py39-none-any.whl.

File metadata

File hashes

Hashes for mixturemapping-0.5.5-py39-none-any.whl
Algorithm Hash digest
SHA256 e1b02a01fddc4591f43ca816b8f362b135f4c7d97e26ff7d6d9ead2e920e317b
MD5 0b4044487817d243e4711c4f7ac84f0d
BLAKE2b-256 47ef04a94fb920f81448eb030adaa93e3118523554d106743b461668062b6b9e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page