MKL-based FFT transforms for NumPy arrays
Project description
mkl_fft
-- a NumPy-based Python interface to Intel (R) MKL FFT functionality
mkl_fft
started as a part of Intel (R) Distribution for Python* optimizations to NumPy, and is now being released
as a stand-alone package. It can be installed into conda environment using
conda install -c https://software.repos.intel.com/python/conda mkl_fft
or from conda-forge channel:
conda install -c conda-forge mkl_fft
To install mkl_fft Pypi package please use following command:
python -m pip install --index-url https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_fft
If command above installs NumPy package from the Pypi, please use following command to install Intel optimized NumPy wheel package from Intel Pypi Cloud:
python -m pip install --index-url https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_fft numpy==<numpy_version>
Where <numpy_version>
should be the latest version from https://software.repos.intel.com/python/conda/
Since MKL FFT supports performing discrete Fourier transforms over non-contiguously laid out arrays, MKL can be directly used on any well-behaved floating point array with no internal overlaps for both in-place and not in-place transforms of arrays in single and double floating point precision.
This eliminates the need to copy input array contiguously into an intermediate buffer.
mkl_fft
directly supports N-dimensional Fourier transforms.
More details can be found in SciPy 2017 conference proceedings: https://github.com/scipy-conference/scipy_proceedings/tree/2017/papers/oleksandr_pavlyk
It implements the following functions:
Complex transforms, similar to those in scipy.fftpack
:
fft(x, n=None, axis=-1, overwrite_x=False)
ifft(x, n=None, axis=-1, overwrite_x=False)
fft2(x, shape=None, axes=(-2,-1), overwrite_x=False)
ifft2(x, shape=None, axes=(-2,-1), overwrite_x=False)
fftn(x, n=None, axes=None, overwrite_x=False)
ifftn(x, n=None, axes=None, overwrite_x=False)
Real transforms
rfft(x, n=None, axis=-1, overwrite_x=False)
- real 1D Fourier transform, like scipy.fftpack.rfft
rfft_numpy(x, n=None, axis=-1)
- real 1D Fourier transform, like numpy.fft.rfft
rfft2_numpy(x, s=None, axes=(-2,-1))
- real 2D Fourier transform, like numpy.fft.rfft2
rfftn_numpy(x, s=None, axes=None)
- real 2D Fourier transform, like numpy.fft.rfftn
... and similar irfft*
functions.
The package also provides mkl_fft._numpy_fft
and mkl_fft._scipy_fft
interfaces which provide drop-in replacements for equivalent functions in NumPy and SciPy respectively.
To build mkl_fft
from sources on Linux:
- install a recent version of MKL, if necessary;
- execute
source /path/to/mklroot/bin/mklvars.sh intel64
; - execute
pip install .
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file mkl_fft-1.3.11-81-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: mkl_fft-1.3.11-81-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 171.5 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aad6ee1f290a0163246a0ccb8d761236e90a1fe5acc42b402ef71c6ca3ca6c4a |
|
MD5 | 50ba93b49dd6409b6b9229766b1a3b3d |
|
BLAKE2b-256 | 1e48282c6ad9eccf4d8ca168a75770379acde1f353af5a1754f497a1cb1e1e8b |
File details
Details for the file mkl_fft-1.3.11-81-cp312-cp312-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: mkl_fft-1.3.11-81-cp312-cp312-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.12, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5561565f832a921eb08ce6adca04a9b03d03046ab60dfa4080d1342b803fd165 |
|
MD5 | 0902c0f0a978bc0d8f98c92d408051c7 |
|
BLAKE2b-256 | b54bd11f5fb3bfffac597f3716bf869dad317159ea8b613be11b3478f5b0f4b3 |
File details
Details for the file mkl_fft-1.3.11-81-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: mkl_fft-1.3.11-81-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 178.7 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cbd0800d6f08ff21579b9b45f5bfb42c209e934c0c72e4adb73cd8fd6852220a |
|
MD5 | 1399c401460c24bb5f991f8552ee0c2d |
|
BLAKE2b-256 | 454b522fc74ebe9bcef143c964090eba19eb51ac19abd82f99b60f1e4afab9df |
File details
Details for the file mkl_fft-1.3.11-81-cp311-cp311-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: mkl_fft-1.3.11-81-cp311-cp311-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.11, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | be80a554b3e3de20f4e9df9f934757ebd407efe1b2f74a26ceec555320214716 |
|
MD5 | 0270e6556a9cd720966b6cd8927286c7 |
|
BLAKE2b-256 | 0f65e2473c1dfc4f727e0462beb092b6ecb264360a61cce6888d815e69d14c1c |
File details
Details for the file mkl_fft-1.3.11-81-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: mkl_fft-1.3.11-81-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 178.7 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1a627490e8775863abab752484bcfdefaabee9c876a5d66846e151132c0f8d9 |
|
MD5 | ab84ebf72116ce238a4a0c0c366936c1 |
|
BLAKE2b-256 | 87e695965719f1935c51211ed3a01da90e18e950efc5469c4b332df653d08d4b |
File details
Details for the file mkl_fft-1.3.11-81-cp310-cp310-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: mkl_fft-1.3.11-81-cp310-cp310-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.10, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0634f56f28ed3b8bc98712e5383495a93080472f26b30dcadcaa89d76c2ac916 |
|
MD5 | 9de22b1e93ec0946222c13eb44dfd531 |
|
BLAKE2b-256 | cb925bbf9c7221716ec454e502b702700f20d328ca46461a93fa58959dae2107 |
File details
Details for the file mkl_fft-1.3.11-81-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: mkl_fft-1.3.11-81-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 178.7 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 26d0cbb4aca433efb8e54615ca397f4b9106e4a09dad8ca1a08a999e916f89aa |
|
MD5 | 99f49111dd5a27c4b273a98ed8fc5f5e |
|
BLAKE2b-256 | 332883b81cdeb116386d98688e6333811ed9f95aad8934d7138d72210708f115 |
File details
Details for the file mkl_fft-1.3.11-81-cp39-cp39-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: mkl_fft-1.3.11-81-cp39-cp39-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 3.7 MB
- Tags: CPython 3.9, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb8f5a3aea3400da34a0f13fa45e74a7a656778b0b7df7268c23f51bebcbbac1 |
|
MD5 | b3f1707e815909573980a5c2c5c15f1e |
|
BLAKE2b-256 | 03d4475f7844f151c8002ece7eb9a19bd5969230d74e0d51568ae2c4790a0283 |