No project description provided
Project description
mkl_random
-- a NumPy-based Python interface to Intel (R) MKL Random Number Generation functionality
mkl_random
has started as Intel (R) Distribution for Python optimizations for NumPy.
Per NumPy's community suggestions, voiced in https://github.com/numpy/numpy/pull/8209, it is being released as a stand-alone package.
Prebuilt mkl_random
can be installed into conda environment from Intel's channel on Anaconda cloud:
conda install -c intel mkl_random
mkl_random
is not fixed-seed backward compatible drop-in replacement for numpy.random
, meaning that it implements sampling from the same distributions as numpy.random
.
For distributions directly supported in Intel (R) Math Kernel Library (MKL), method
keyword is supported:
mkl_random.standard_normal(size=(10**5, 10**3), method='BoxMuller')
Additionally, mkl_random
exposes different basic random number generation algorithms available in MKL. For example to use SFMT19937
use
mkl_random.RandomState(77777, brng='SFMT19937')
For generator families, such that MT2203
and Wichmann-Hill, a particular member of the family can be chosen by specifying brng=('WH', 3)
, etc.
See MKL reference guide for more details: https://software.intel.com/en-us/mkl-developer-reference-c-random-number-generators
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file mkl_random-1.2.1-3-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: mkl_random-1.2.1-3-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 361.5 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/0.0.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
5682af8429fb54cf8a170b6c4074dfe76c886cfd87498d2924eb6fed96191388
|
|
MD5 |
4f77f10081c43ddb3f619c41148ee0f8
|
|
BLAKE2b-256 |
6a9773a563c96dddffbece3a34542f745b49ecdcd4145f02c7e8729093f6518d
|
File details
Details for the file mkl_random-1.2.1-3-cp37-cp37m-manylinux2014_x86_64.whl
.
File metadata
- Download URL: mkl_random-1.2.1-3-cp37-cp37m-manylinux2014_x86_64.whl
- Upload date:
- Size: 378.7 kB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/0.0.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
e311d1a91a64f129f4fab94e54b493e1dcb4484c72278ceaee7afa3537b07f90
|
|
MD5 |
673c435346f324aaad217158c7100b29
|
|
BLAKE2b-256 |
79edd2235cdc96dcef1bb7cad11bfa1400a99f1ce82acc75d395b27b1c532873
|
File details
Details for the file mkl_random-1.2.1-2-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: mkl_random-1.2.1-2-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 361.5 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/0.0.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
1bf256dfeb1aad9d4cb9521c698df68d9e392eb302ca81ec6143f5dcab1f17b2
|
|
MD5 |
64b6e755b22af1446d28aac1740a26eb
|
|
BLAKE2b-256 |
493d1bf4bef1a8cd6d2b3cc4a74775858977946be88f89fe7ad12f6dd7dcc085
|
File details
Details for the file mkl_random-1.2.1-2-cp37-cp37m-manylinux2014_x86_64.whl
.
File metadata
- Download URL: mkl_random-1.2.1-2-cp37-cp37m-manylinux2014_x86_64.whl
- Upload date:
- Size: 378.7 kB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/0.0.0 pkginfo/1.6.0 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
e0992c3882781cb3f84e0c5d27c8615f3bbf473decaa5bb1a8b89b493a7aadf5
|
|
MD5 |
91ecea8ad46352b6afb2fa773b5a7a54
|
|
BLAKE2b-256 |
674e52f5966816fff0686aefe7b0cedcf25d6b4f288fe702651425dec49ada44
|