NumPy-based Python interface to Intel (R) MKL Random Number Generation functionality
Project description
mkl_random
-- a NumPy-based Python interface to Intel (R) MKL Random Number Generation functionality
mkl_random
has started as Intel (R) Distribution for Python optimizations for NumPy.
Per NumPy's community suggestions, voiced in https://github.com/numpy/numpy/pull/8209, it is being released as a stand-alone package.
Prebuilt mkl_random
can be installed into conda environment from Intel's channel:
conda install -c https://software.repos.intel.com/python/conda mkl_random
or from conda forge channel:
conda install -c conda-forge mkl_random
To install mkl_random Pypi package please use following command:
python -m pip install -i https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_random
If command above installs NumPy package from the Pypi, please use following command to install Intel optimized NumPy wheel package from Intel Pypi Cloud:
python -m pip install -i https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_random numpy==<numpy_version>
Where <numpy_version>
should be the latest version from https://software.repos.intel.com/python/conda/
mkl_random
is not fixed-seed backward compatible drop-in replacement for numpy.random
, meaning that it implements sampling from the same distributions as numpy.random
.
For distributions directly supported in Intel (R) Math Kernel Library (MKL), method
keyword is supported:
mkl_random.standard_normal(size=(10**5, 10**3), method='BoxMuller')
Additionally, mkl_random
exposes different basic random number generation algorithms available in MKL. For example to use SFMT19937
use
mkl_random.RandomState(77777, brng='SFMT19937')
For generator families, such that MT2203
and Wichmann-Hill, a particular member of the family can be chosen by specifying brng=('WH', 3)
, etc.
The list of supported by mkl_random.RandomState
constructor brng
keywords is as follows:
- 'MT19937'
- 'SFMT19937'
- 'WH' or ('WH', id)
- 'MT2203' or ('MT2203', id)
- 'MCG31'
- 'R250'
- 'MRG32K3A'
- 'MCG59'
- 'PHILOX4X32X10'
- 'NONDETERM'
- 'ARS5'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file mkl_random-1.2.8-101-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: mkl_random-1.2.8-101-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 323.0 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9bc8103765aeae921d78fa76720eb255b446aa6ecd477f76c4d3306dee99fa1b |
|
MD5 | b1c3ce31be4a10b4493651bc800ff383 |
|
BLAKE2b-256 | d0c45eeadf23b22b3a8d3f9312141ac00ebd6ba4ac4b41afa897771b55fc1d61 |
File details
Details for the file mkl_random-1.2.8-101-cp312-cp312-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: mkl_random-1.2.8-101-cp312-cp312-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.12, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5d011174bd11dbfa208d92450f3326af69fe8180b4260947ebea6b012e75eb9a |
|
MD5 | 7d9e4a3e1842a1dfe672ee64812e1376 |
|
BLAKE2b-256 | 6e4e0b113175e3198d4b22ec99b5fbb599b31a957ce09302adb7bb6d9804f759 |
File details
Details for the file mkl_random-1.2.8-101-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: mkl_random-1.2.8-101-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 341.9 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b3ac91d654e7a52ce6dc956e82c35b3b1a4a85dd853f36b75dba0a2df376412 |
|
MD5 | abf9a5058cee58b85fcc91e86cf8b4ef |
|
BLAKE2b-256 | 51514251def9ab2f755e9bcf695a4b654b8d7b111233dce9aa7c8e0bea7a4ad6 |
File details
Details for the file mkl_random-1.2.8-101-cp311-cp311-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: mkl_random-1.2.8-101-cp311-cp311-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.11, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2630e962cd43a952f4b6a69a447f9a24c4bd70c43f3f5acf1d48b8c16b000000 |
|
MD5 | ecbb840d9bed66f3926711eea0c2a542 |
|
BLAKE2b-256 | 791c3bf53bc4c2ea1046ef8d55b7670c779edf9ef0164704d406a8adc46d6936 |
File details
Details for the file mkl_random-1.2.8-101-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: mkl_random-1.2.8-101-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 340.0 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | abc7e00ea815387934565d8cc4433b7e7bb43cfaa10bbac447a7d310439e088f |
|
MD5 | f6056227c86bf784cefa8fc996723623 |
|
BLAKE2b-256 | deb3de33be593f7516e1c370bc197e487619e5fc12268d8c05248c1d3ba20f3d |
File details
Details for the file mkl_random-1.2.8-101-cp310-cp310-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: mkl_random-1.2.8-101-cp310-cp310-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.10, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bfca77f997226bdae61455143f4f4d3b40c5384b58f8dff6c73fba56f3cece7b |
|
MD5 | d0169aa62d74e5820aad04f8c56fbea8 |
|
BLAKE2b-256 | c83cab6db8f48208453234f3bd48ad69344739fced35d4c0d022939ae4b2fec3 |
File details
Details for the file mkl_random-1.2.8-101-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: mkl_random-1.2.8-101-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 340.4 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d148e83f51c77b48030b29ce80f478e85af2d6672d975923d797b6b51e248e9e |
|
MD5 | a8c67620052995c3616b0132d05790a4 |
|
BLAKE2b-256 | fe2cb30577814ac0e28304c687f4ddda5f1807e76c2cc9467a9fa4fba93e4608 |
File details
Details for the file mkl_random-1.2.8-101-cp39-cp39-manylinux_2_28_x86_64.whl
.
File metadata
- Download URL: mkl_random-1.2.8-101-cp39-cp39-manylinux_2_28_x86_64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.9, manylinux: glibc 2.28+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ae18c6ffa9372c4780c622bf51e5eaaaaca7a29aa6069a9657fd4e98b6dc4eb6 |
|
MD5 | 65e8f894f60394cefe1aa9e7a47ab615 |
|
BLAKE2b-256 | f3ac0824bd0c5ae8f003ad82f666025bc292485dbbbb399588f8ab675766f605 |