Skip to main content

NumPy-based Python interface to Intel (R) MKL Random Number Generation functionality

Project description

mkl_random -- a NumPy-based Python interface to Intel (R) MKL Random Number Generation functionality

Conda package using conda-forge

mkl_random has started as Intel (R) Distribution for Python optimizations for NumPy.

Per NumPy's community suggestions, voiced in https://github.com/numpy/numpy/pull/8209, it is being released as a stand-alone package.

Prebuilt mkl_random can be installed into conda environment from Intel's channel:

  conda install -c https://software.repos.intel.com/python/conda mkl_random

or from conda forge channel:

   conda install -c conda-forge mkl_random

To install mkl_random Pypi package please use following command:

   python -m pip install -i https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_random

If command above installs NumPy package from the Pypi, please use following command to install Intel optimized NumPy wheel package from Intel Pypi Cloud:

   python -m pip install -i https://software.repos.intel.com/python/pypi --extra-index-url https://pypi.org/simple mkl_random numpy==<numpy_version>

Where <numpy_version> should be the latest version from https://software.repos.intel.com/python/conda/


mkl_random is not fixed-seed backward compatible drop-in replacement for numpy.random, meaning that it implements sampling from the same distributions as numpy.random.

For distributions directly supported in Intel (R) Math Kernel Library (MKL), method keyword is supported:

   mkl_random.standard_normal(size=(10**5, 10**3), method='BoxMuller')

Additionally, mkl_random exposes different basic random number generation algorithms available in MKL. For example to use SFMT19937 use

   mkl_random.RandomState(77777, brng='SFMT19937')

For generator families, such that MT2203 and Wichmann-Hill, a particular member of the family can be chosen by specifying brng=('WH', 3), etc.

The list of supported by mkl_random.RandomState constructor brng keywords is as follows:

  • 'MT19937'
  • 'SFMT19937'
  • 'WH' or ('WH', id)
  • 'MT2203' or ('MT2203', id)
  • 'MCG31'
  • 'R250'
  • 'MRG32K3A'
  • 'MCG59'
  • 'PHILOX4X32X10'
  • 'NONDETERM'
  • 'ARS5'

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mkl_random-1.2.8-101-cp312-cp312-win_amd64.whl (323.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

mkl_random-1.2.8-101-cp312-cp312-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

mkl_random-1.2.8-101-cp311-cp311-win_amd64.whl (341.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

mkl_random-1.2.8-101-cp311-cp311-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

mkl_random-1.2.8-101-cp310-cp310-win_amd64.whl (340.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

mkl_random-1.2.8-101-cp310-cp310-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

mkl_random-1.2.8-101-cp39-cp39-win_amd64.whl (340.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

mkl_random-1.2.8-101-cp39-cp39-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

File details

Details for the file mkl_random-1.2.8-101-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for mkl_random-1.2.8-101-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9bc8103765aeae921d78fa76720eb255b446aa6ecd477f76c4d3306dee99fa1b
MD5 b1c3ce31be4a10b4493651bc800ff383
BLAKE2b-256 d0c45eeadf23b22b3a8d3f9312141ac00ebd6ba4ac4b41afa897771b55fc1d61

See more details on using hashes here.

File details

Details for the file mkl_random-1.2.8-101-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mkl_random-1.2.8-101-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5d011174bd11dbfa208d92450f3326af69fe8180b4260947ebea6b012e75eb9a
MD5 7d9e4a3e1842a1dfe672ee64812e1376
BLAKE2b-256 6e4e0b113175e3198d4b22ec99b5fbb599b31a957ce09302adb7bb6d9804f759

See more details on using hashes here.

File details

Details for the file mkl_random-1.2.8-101-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for mkl_random-1.2.8-101-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2b3ac91d654e7a52ce6dc956e82c35b3b1a4a85dd853f36b75dba0a2df376412
MD5 abf9a5058cee58b85fcc91e86cf8b4ef
BLAKE2b-256 51514251def9ab2f755e9bcf695a4b654b8d7b111233dce9aa7c8e0bea7a4ad6

See more details on using hashes here.

File details

Details for the file mkl_random-1.2.8-101-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mkl_random-1.2.8-101-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2630e962cd43a952f4b6a69a447f9a24c4bd70c43f3f5acf1d48b8c16b000000
MD5 ecbb840d9bed66f3926711eea0c2a542
BLAKE2b-256 791c3bf53bc4c2ea1046ef8d55b7670c779edf9ef0164704d406a8adc46d6936

See more details on using hashes here.

File details

Details for the file mkl_random-1.2.8-101-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for mkl_random-1.2.8-101-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 abc7e00ea815387934565d8cc4433b7e7bb43cfaa10bbac447a7d310439e088f
MD5 f6056227c86bf784cefa8fc996723623
BLAKE2b-256 deb3de33be593f7516e1c370bc197e487619e5fc12268d8c05248c1d3ba20f3d

See more details on using hashes here.

File details

Details for the file mkl_random-1.2.8-101-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mkl_random-1.2.8-101-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bfca77f997226bdae61455143f4f4d3b40c5384b58f8dff6c73fba56f3cece7b
MD5 d0169aa62d74e5820aad04f8c56fbea8
BLAKE2b-256 c83cab6db8f48208453234f3bd48ad69344739fced35d4c0d022939ae4b2fec3

See more details on using hashes here.

File details

Details for the file mkl_random-1.2.8-101-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for mkl_random-1.2.8-101-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d148e83f51c77b48030b29ce80f478e85af2d6672d975923d797b6b51e248e9e
MD5 a8c67620052995c3616b0132d05790a4
BLAKE2b-256 fe2cb30577814ac0e28304c687f4ddda5f1807e76c2cc9467a9fa4fba93e4608

See more details on using hashes here.

File details

Details for the file mkl_random-1.2.8-101-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mkl_random-1.2.8-101-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ae18c6ffa9372c4780c622bf51e5eaaaaca7a29aa6069a9657fd4e98b6dc4eb6
MD5 65e8f894f60394cefe1aa9e7a47ab615
BLAKE2b-256 f3ac0824bd0c5ae8f003ad82f666025bc292485dbbbb399588f8ab675766f605

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page