Skip to main content

MKL-based universal functions for NumPy arrays

Project description

Conda package OpenSSF Scorecard

mkl_umath

mkl_umath._ufuncs exposes Intel(R) Math Kernel Library powered version of loops used in the patched version of NumPy, that used to be included in Intel(R) Distribution for Python*.

Patches were factored out per community feedback (NEP-36).

mkl_umath started as a part of Intel (R) Distribution for Python* optimizations to NumPy, and is now being released as a stand-alone package. It can be installed into conda environment using

   conda install -c https://software.repos.intel.com/python/conda mkl_umath

To install mkl_umath Pypi package please use following command:

   python -m pip install mkl_umath

Building

Intel(R) C compiler and Intel(R) Math Kernel Library are required to build mkl_umath from source:

# ensure that MKL is installed into Python prefix, Intel LLVM compiler is activated
export MKLROOT=$CONDA_PREFIX
CC=icx pip install --no-build-isolation --no-deps -e .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mkl_umath-0.1.2-111-cp312-cp312-win_amd64.whl (193.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

mkl_umath-0.1.2-111-cp312-cp312-manylinux_2_28_x86_64.whl (439.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

mkl_umath-0.1.2-111-cp311-cp311-win_amd64.whl (194.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

mkl_umath-0.1.2-111-cp311-cp311-manylinux_2_28_x86_64.whl (440.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

mkl_umath-0.1.2-111-cp310-cp310-win_amd64.whl (194.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

mkl_umath-0.1.2-111-cp310-cp310-manylinux_2_28_x86_64.whl (441.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

mkl_umath-0.1.2-111-cp39-cp39-win_amd64.whl (195.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

mkl_umath-0.1.2-111-cp39-cp39-manylinux_2_28_x86_64.whl (442.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

File details

Details for the file mkl_umath-0.1.2-111-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for mkl_umath-0.1.2-111-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9c4fde23c50f14d2d515924a3bf88cc900f3a7d6e91e8948a2058a5a392597d2
MD5 4f6803db85bd5113dbf8006b82a3afbf
BLAKE2b-256 6257445beb01572f28d86a5f6008ebe67d6f649025a997ba329a83a7d0480f86

See more details on using hashes here.

File details

Details for the file mkl_umath-0.1.2-111-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mkl_umath-0.1.2-111-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 01e395067316f20cc593fdbdd3410ef4921377be6f938ec4049571fc2ed1f6bb
MD5 dc1cfc3fd4285101404d3029cf234522
BLAKE2b-256 90be693cfd10349a53c0acf57ce1f4057d869989d3a8afd0e00310d76bb12d07

See more details on using hashes here.

File details

Details for the file mkl_umath-0.1.2-111-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for mkl_umath-0.1.2-111-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ed996ad15f7a8edeb277050d4d4f7e96ac05de5b1d8bfd963163f9df356f62bc
MD5 db239bc9feb27973c18251e34bc78ccc
BLAKE2b-256 e23210d2d2d9b02553e05039872c4eebf278261376d8df0441928e559e889f2d

See more details on using hashes here.

File details

Details for the file mkl_umath-0.1.2-111-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mkl_umath-0.1.2-111-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c63d37a815732e214ae8f50b71257450c1b51ef95dbcf22395e260b8a76a7e4f
MD5 dad71e18f7a2c3907035e3da3cf906e4
BLAKE2b-256 1a8da17732237e6e06e7ab87c1ba4aa4a6cd37e3fd6b8f1002aa64917c1ff245

See more details on using hashes here.

File details

Details for the file mkl_umath-0.1.2-111-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for mkl_umath-0.1.2-111-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ebfc0ad616de655ef986fa9c86ea515d58fa0416379bb392230787e88f2a0100
MD5 4ea556f02a16a929a95557f6adacb599
BLAKE2b-256 f502380ee79bda14203dc3478da3a3a066c098f67892cac707d2a5e1bdfe1ad2

See more details on using hashes here.

File details

Details for the file mkl_umath-0.1.2-111-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mkl_umath-0.1.2-111-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 064bae2dd5e91f32acffc620e06be52cecbcb29e4b813c9ec1bc22af7a095d82
MD5 e967b4bbe82bc81e4b6483d60899a9f4
BLAKE2b-256 747ebe8eda14f87a0013da997bf9b33bf2a98d52913a99afec15ae4a78e88817

See more details on using hashes here.

File details

Details for the file mkl_umath-0.1.2-111-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for mkl_umath-0.1.2-111-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c57a305abbd04164e022096d188a63c92135ca0c0845419ffc97e82e6d164935
MD5 94160fe915800f86b510e74b88f16853
BLAKE2b-256 843d31d1b456373270507c346c2f9fdc3d93ca8007129bfab4a1f9d5f566f24e

See more details on using hashes here.

File details

Details for the file mkl_umath-0.1.2-111-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for mkl_umath-0.1.2-111-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8aeccad169a209c4e7ed81bdf5082d875e7c4fb2174dabdb1f2574e925bddca9
MD5 38a9284650e92ebaa3840be3ccfc6258
BLAKE2b-256 22c291f20f1fe4d48afc172c41085574445595ba583ed9427d289e37c377c30d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page