Skip to main content

It is used to quickly build a scorecard project and dichotomy model package.

Project description

Make Scorecard(mksc)

快速构建二分类模型,标准化特征工程以及拓展制作评分卡,文件说明见docs\instruction.md

1. 安装工具包

pip install mksc

2. 创建项目

命令行工具创建项目

mksc project_name

3. 修改项目配置

修改project_name\config\configuration.ini文件,进行项目配置

4. 探索性数据分析

进行探索性数据分析python project_name\eda.py
生成:

  • 数据报告: project_name\result\report.html
  • 抽样数据: project_name\result\sample.xlsx
  • 特征配置: project_name\config\variable_type.csv

5. 修改特征配置

修改project_name\config\variable_type.csv文件,进行特征配置,配置列说明如下:

  • isSave:变量是否保留进行特征工程
    • 取值:0-不保留;1-保留
  • Type: 变量类型
    • 取值: numeric-数值类型;category-类别类型;datetime-日期类型;label-标签列
  • Default: 原始数据设定的默认值

5. 自定义数据清洗

编写自定义数据清洗与特征组合过程函数project_name\custom.py
自定义过程封装在Custom类中,定义了2个静态方法,clean_data用于处理行方向的数据与值修改, feature_combination用于扩展列。

6. 训练模块

完成以上配置后,执行特征工程feature_engineering类,models目录下通过模型模板训练 模型结果、特征工程结果均置于project_name\result下.
至此完成二分类项目构建

7. 评分卡与模型调整

如果训练逻辑回归模型可选制作评分卡

8. 模型应用与预测

python project_name\preict.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mksc-3.0.0.tar.gz (21.8 kB view hashes)

Uploaded source

Built Distribution

mksc-3.0.0-py3-none-any.whl (35.9 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page