Skip to main content

Making ML more accessible to botting apps. Solving Complex UI Challenges w/ ML.

Project description

Welcome to ML_Botting_Core!

Solving Complex UI Challenges w/ ML
pip install ml-botting-core

TensorFlow Python

Public Eve Online Models

This package will auto download these models from Here at runtime and maintain a copy on your device. (and auto update)
Sample config Here with all models.

Training

Train your own models Here
Sort your training images into folders (images shape must be the same shape) and target the root for training. The classifer will train those image samples to the name of the folder they are in.

  • Image names do not matter.
  • PNGs only.
  • Number of samples per folder do not matter, however you want enough, 80% for training, 20% for validation.

├── training_data
│ ├── char_select
│ │ ├── image_1.png
│ │ ├── image_2.png
│ │ ├── image_3.png
│ ├── connection_lost
│ │ ├── image_1.png
│ │ ├── image_2.png
│ │ ├── image_3.png
│ ├── in_flight
│ │ ├── image_1.png
│ │ ├── image_2.png
│ │ ├── image_3.png
│ ├── in_hanger
│ │ ├── image_1.png
│ │ ├── image_2.png
│ │ ├── image_3.png

Usage:

Check out the samples Here.

ml_botting_core_config.json

{
   "public_models":[
      {
         "game":"eve_online",
         "model_name":"game_state",
         "download_latest":1,
         "download_latest_from":"https://storage.googleapis.com/eve_online_models/",
         "model_root_directory":"O:\\eve_live_models\\game_state",
         "model_log_directory":"O:\\eve_live_logs\\game_state",
         "save_images":0
      }
   ]
}

Implementation

from ml_botting_core import universal_predictor

up_config = json.load(open(r'ml_botting_core_config.json'))
up = universal_predictor(config=up_config)

img = Image.open('some_image.png')
state_result = up.predict(img, 'game_state')

state_result

{
   "epoc_time":"1682138565007.508",
   "argmax_index":2,
   "value_at_argmax":"1.0",
   "class":"jump_though_first",
   "classes":[
      "dock_now",
      "invalid",
      "jump_though_first",
      "jump_through_second",
      "no_action",
      "warp_to_dock_3",
      "warp_to_dock_4"
   ],
   "scores":[
      1.2750345662162804e-15,
      1.4581948495906438e-11,
      1.0,
      5.21881417175057e-17,
      1.4712418422554443e-18,
      1.2777047215389858e-12,
      6.730089694497203e-17
   ],
   "id":"98ad373b-e0a6-11ed-9b27-2cf05d9fe8eb",
   "image_saved":0,
   "model_name":"nav_options"
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ml_botting_core-1.0.7.tar.gz (9.7 kB view details)

Uploaded Source

Built Distribution

ml_botting_core-1.0.7-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file ml_botting_core-1.0.7.tar.gz.

File metadata

  • Download URL: ml_botting_core-1.0.7.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ml_botting_core-1.0.7.tar.gz
Algorithm Hash digest
SHA256 22dea86084069a2b205ad68564372e6dbc7b7d7aebefbd1ce60408079a31b445
MD5 4e5e6f556f9c9fd1707b3f2996f0903d
BLAKE2b-256 6c89322c920cfbe4a0a2ab74b7cb34dbb236fdbbeed5dcaeca322f5192b4f487

See more details on using hashes here.

File details

Details for the file ml_botting_core-1.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for ml_botting_core-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 b3c3181916b34a099453d498fa56cf4839b9007ff5c5c3300e6cee0b9b289251
MD5 88badb7164e9f512212ad543eae6f76d
BLAKE2b-256 8b15efc5214f9adf713a3cd2d98947c268c4077293e01baa5be40c7883328700

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page