Skip to main content

Tooling for ML in LLVM

Project description

Infrastructure for MLGO - a Machine Learning Guided Compiler Optimizations Framework.

MLGO is a framework for integrating ML techniques systematically in LLVM. It replaces human-crafted optimization heuristics in LLVM with machine learned models. The MLGO framework currently supports two optimizations:

  1. inlining-for-size(LLVM RFC);
  2. register-allocation-for-performance(LLVM RFC)

The compiler components are both available in the main LLVM repository. This repository contains the training infrastructure and related tools for MLGO.

We currently use two different ML algorithms: Policy Gradient and Evolution Strategies to train policies. Currently, this repository only support Policy Gradient training. The release of Evolution Strategies training is on our roadmap.

Check out this demo for an end-to-end demonstration of how to train your own inlining-for-size policy from the scratch with Policy Gradient, or check out this demo for a demonstration of how to train your own regalloc-for-performance policy.

For more details about MLGO, please refer to our paper MLGO: a Machine Learning Guided Compiler Optimizations Framework.

For more details about how to contribute to the project, please refer to contributions.

Pretrained models

We occasionally release pretrained models that may be used as-is with LLVM. Models are released as github releases, and are named as [task]-[major-version].[minor-version].The versions are semantic: the major version corresponds to breaking changes on the LLVM/compiler side, and the minor version corresponds to model updates that are independent of the compiler.

When building LLVM, there is a flag -DLLVM_INLINER_MODEL_PATH which you may set to the path to your inlining model. If the path is set to download, then cmake will download the most recent (compatible) model from github to use. Other values for the flag could be:

# Model is in /tmp/model, i.e. there is a file /tmp/model/saved_model.pb along
# with the rest of the tensorflow saved_model files produced from training.
-DLLVM_INLINER_MODEL_PATH=/tmp/model

# Download the most recent compatible model
-DLLVM_INLINER_MODEL_PATH=download

Prerequisites

Currently, the assumptions for the system are:

  • Recent Ubuntu distro, e.g. 20.04
  • python 3.8.x/3.9.x/3.10.x
  • for local training, which is currently the only supported mode, we recommend a high-performance workstation (e.g. 96 hardware threads).

Training assumes a clang build with ML 'development-mode'. Please refer to:

The model training - specific prerequisites are:

Pipenv:

pip3 install pipenv

The actual dependencies:

pipenv sync --system

Note that the above command will only work from the root of the repository since it needs to have Pipfile.lock in the working directory at the time of execution.

If you plan on doing development work, make sure you grab the development and CI categories of packages as well:

pipenv sync --system --categories "dev-packages ci"

Optionally, to run tests (run_tests.sh), you also need:

sudo apt-get install virtualenv

Note that the same tensorflow package is also needed for building the 'release' mode for LLVM.

Docs

An end-to-end demo using Fuchsia as a codebase from which we extract a corpus and train a model.

How to add a feature guide. Extensibility model.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ml-compiler-opt-0.0.1.dev202401200007.tar.gz (147.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file ml-compiler-opt-0.0.1.dev202401200007.tar.gz.

File metadata

File hashes

Hashes for ml-compiler-opt-0.0.1.dev202401200007.tar.gz
Algorithm Hash digest
SHA256 61f36039cbe4922fb13b38b32ba61a27294004178c99b20637748723db4262bf
MD5 858690e777a36dd08523ad36cc99d10f
BLAKE2b-256 b4a2b2afe5d34bea68ddb5d5231cb93c9a81def8d0ba2e944caba372b4c2ef0a

See more details on using hashes here.

File details

Details for the file ml_compiler_opt-0.0.1.dev202401200007-py3-none-any.whl.

File metadata

File hashes

Hashes for ml_compiler_opt-0.0.1.dev202401200007-py3-none-any.whl
Algorithm Hash digest
SHA256 0e16ca58a7c0838b26b2817382388eb346d6e21e6f5783d94c3aa5696da783dd
MD5 513c3f93b4007ff37137dd86d4a757ad
BLAKE2b-256 d286d160dafebbbd8b9bd786a4455bade90ed4aad6aeaa8fd836e3442e5a4f3e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page