Skip to main content

A library for maintaining metadata for artifacts.

Project description

# ML Metadata

ML Metadata (MLMD) is a library for recording and retrieving metadata associated with ML developer and data scientist workflows.

Caution: ML Metadata may be backwards incompatible before version 1.0.

## Getting Started

For more background on MLMD and instructions on using it, see the [getting started guide](https://github.com/google/ml-metadata/blob/master/g3doc/get_started.md)

## Installing from PyPI

<!– TODO: create PyPI repository –> <!– TODO: add instructions for installing from PyPI –>

## Installing from source

### 1. Prerequisites

#### Install Python

<!– TODO: Add instructions for installing Python –>

#### Install Bazel

If Bazel is not installed on your system, install it now by following [these directions](https://bazel.build/versions/master/docs/install.html).

NOTE: ML Metadata works only with bazel version 0.15.0. Higher bazel versions are not guaranteed to compile ML Metadata correctly.

### 2. Clone ML Metadata repository

<!– TODO: create ML Metadata repository –> `shell git clone https://github.com/google/ml-metadata cd ml-metadata `

Note that these instructions will install the latest master branch of ML Metadata. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.

### 3. Build the pip package

ML Metadata uses Bazel to build the pip package from source:

`shell bazel run -c opt --define grpc_no_ares=true ml_metadata:build_pip_package `

You can find the generated .whl file in the dist subdirectory.

### 4. Install the pip package

`shell pip install dist/*.whl `

## Supported platforms

ML Metadata works on Python 2.7 or Python 3.

ML Metadata is built and tested on the following 64-bit operating systems:

<!– TODO: * macOS 10.12.6 (Sierra) or later. –> <!– TODO: * Ubuntu 14.04 or later. –>

## Dependencies

<!– TODO: determine dependencies. –>

## Compatible versions

<!– TODO: determine compatible versions. –>

## Questions

<!– TODO: setup stackoverflow –>

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ml-metadata-0.13.0.dev0.tar.gz (31.8 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

ml_metadata-0.13.0.dev0-cp37-cp37m-macosx_10_13_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.7mmacOS 10.13+ x86-64

ml_metadata-0.13.0.dev0-cp27-cp27mu-manylinux1_x86_64.whl (4.0 MB view details)

Uploaded CPython 2.7mu

ml_metadata-0.13.0.dev0-cp27-cp27m-macosx_10_13_intel.whl (4.5 MB view details)

Uploaded CPython 2.7mmacOS 10.13+ Intel (x86-64, i386)

File details

Details for the file ml-metadata-0.13.0.dev0.tar.gz.

File metadata

  • Download URL: ml-metadata-0.13.0.dev0.tar.gz
  • Upload date:
  • Size: 31.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for ml-metadata-0.13.0.dev0.tar.gz
Algorithm Hash digest
SHA256 685643cf97c4879be1361fb2560a9628befa88c35da4923e40ccaa2918f9e507
MD5 37158dd0eab819874626512a9a71c359
BLAKE2b-256 99dc0830543857002bc527ec0185f00fbca821c0929a06aa056c7eae3b51e568

See more details on using hashes here.

File details

Details for the file ml_metadata-0.13.0.dev0-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.13.0.dev0-cp37-cp37m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.7m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for ml_metadata-0.13.0.dev0-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 aae046d6740f9a56416b66ebb9fd968bc5724a2365080386f26150883964e2f7
MD5 7bdbc1954141549270d5933fa3d7a24e
BLAKE2b-256 251e740705c0b04185eaeb81bef666b1b3c8215e65209d623c5fb925ea154d7f

See more details on using hashes here.

File details

Details for the file ml_metadata-0.13.0.dev0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.13.0.dev0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/2.7.15

File hashes

Hashes for ml_metadata-0.13.0.dev0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 34484c37fed51d725de45100af8332253642f0ea190006e4d3c00c0b759442d8
MD5 f2ff6f23faead17e3080b0823e86712c
BLAKE2b-256 c2905724baa8793906701ea7e8f750ad01c6df653e81a0851cb1f7ae432722cf

See more details on using hashes here.

File details

Details for the file ml_metadata-0.13.0.dev0-cp27-cp27m-macosx_10_13_intel.whl.

File metadata

  • Download URL: ml_metadata-0.13.0.dev0-cp27-cp27m-macosx_10_13_intel.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 2.7m, macOS 10.13+ Intel (x86-64, i386)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/18.5 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.10

File hashes

Hashes for ml_metadata-0.13.0.dev0-cp27-cp27m-macosx_10_13_intel.whl
Algorithm Hash digest
SHA256 46d3d334d2854783ffe5976e91c8c037341bd9b77956076427f09634d8543356
MD5 99cb5056795710570aec3909f24ff14c
BLAKE2b-256 e997ea9f26510173d9686d8a7825d2c8471cb9cbf11ad7afb9216c183b091d53

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page