A library for maintaining metadata for artifacts.
Project description
# ML Metadata
ML Metadata (MLMD) is a library for recording and retrieving metadata associated with ML developer and data scientist workflows.
Caution: ML Metadata may be backwards incompatible before version 1.0.
## Getting Started
For more background on MLMD and instructions on using it, see the [getting started guide](https://github.com/google/ml-metadata/blob/master/g3doc/get_started.md)
## Installing from PyPI
<!– TODO: create PyPI repository –> <!– TODO: add instructions for installing from PyPI –>
## Installing from source
### 1. Prerequisites
#### Install Python
<!– TODO: Add instructions for installing Python –>
#### Install Bazel
If Bazel is not installed on your system, install it now by following [these directions](https://bazel.build/versions/master/docs/install.html).
NOTE: ML Metadata works only with bazel version 0.15.0. Higher bazel versions are not guaranteed to compile ML Metadata correctly.
### 2. Clone ML Metadata repository
<!– TODO: create ML Metadata repository –> `shell git clone https://github.com/google/ml-metadata cd ml-metadata `
Note that these instructions will install the latest master branch of ML Metadata. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.
### 3. Build the pip package
ML Metadata uses Bazel to build the pip package from source:
`shell bazel run -c opt --define grpc_no_ares=true ml_metadata:build_pip_package `
You can find the generated .whl file in the dist subdirectory.
### 4. Install the pip package
`shell pip install dist/*.whl `
## Supported platforms
ML Metadata works on Python 2.7 or Python 3.
ML Metadata is built and tested on the following 64-bit operating systems:
<!– TODO: * macOS 10.12.6 (Sierra) or later. –> <!– TODO: * Ubuntu 14.04 or later. –>
## Dependencies
<!– TODO: determine dependencies. –>
## Compatible versions
<!– TODO: determine compatible versions. –>
## Questions
<!– TODO: setup stackoverflow –>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file ml-metadata-0.13.0.dev0.tar.gz.
File metadata
- Download URL: ml-metadata-0.13.0.dev0.tar.gz
- Upload date:
- Size: 31.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
685643cf97c4879be1361fb2560a9628befa88c35da4923e40ccaa2918f9e507
|
|
| MD5 |
37158dd0eab819874626512a9a71c359
|
|
| BLAKE2b-256 |
99dc0830543857002bc527ec0185f00fbca821c0929a06aa056c7eae3b51e568
|
File details
Details for the file ml_metadata-0.13.0.dev0-cp37-cp37m-macosx_10_13_x86_64.whl.
File metadata
- Download URL: ml_metadata-0.13.0.dev0-cp37-cp37m-macosx_10_13_x86_64.whl
- Upload date:
- Size: 4.5 MB
- Tags: CPython 3.7m, macOS 10.13+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
aae046d6740f9a56416b66ebb9fd968bc5724a2365080386f26150883964e2f7
|
|
| MD5 |
7bdbc1954141549270d5933fa3d7a24e
|
|
| BLAKE2b-256 |
251e740705c0b04185eaeb81bef666b1b3c8215e65209d623c5fb925ea154d7f
|
File details
Details for the file ml_metadata-0.13.0.dev0-cp27-cp27mu-manylinux1_x86_64.whl.
File metadata
- Download URL: ml_metadata-0.13.0.dev0-cp27-cp27mu-manylinux1_x86_64.whl
- Upload date:
- Size: 4.0 MB
- Tags: CPython 2.7mu
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/2.7.15
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
34484c37fed51d725de45100af8332253642f0ea190006e4d3c00c0b759442d8
|
|
| MD5 |
f2ff6f23faead17e3080b0823e86712c
|
|
| BLAKE2b-256 |
c2905724baa8793906701ea7e8f750ad01c6df653e81a0851cb1f7ae432722cf
|
File details
Details for the file ml_metadata-0.13.0.dev0-cp27-cp27m-macosx_10_13_intel.whl.
File metadata
- Download URL: ml_metadata-0.13.0.dev0-cp27-cp27m-macosx_10_13_intel.whl
- Upload date:
- Size: 4.5 MB
- Tags: CPython 2.7m, macOS 10.13+ Intel (x86-64, i386)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/18.5 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/2.7.10
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
46d3d334d2854783ffe5976e91c8c037341bd9b77956076427f09634d8543356
|
|
| MD5 |
99cb5056795710570aec3909f24ff14c
|
|
| BLAKE2b-256 |
e997ea9f26510173d9686d8a7825d2c8471cb9cbf11ad7afb9216c183b091d53
|