Skip to main content

A library for maintaining metadata for artifacts.

Project description

ML Metadata

Python PyPI

ML Metadata (MLMD) is a library for recording and retrieving metadata associated with ML developer and data scientist workflows.

NOTE: ML Metadata may be backwards incompatible before version 1.0.

Getting Started

For more background on MLMD and instructions on using it, see the getting started guide

Installing from PyPI

The recommended way to install ML Metadata is to use the PyPI package:

pip install ml-metadata

Then import the relevant packages:

from ml_metadata import metadata_store
from ml_metadata.proto import metadata_store_pb2

Nightly Packages

ML Metadata (MLMD) also hosts nightly packages at https://pypi-nightly.tensorflow.org on Google Cloud. To install the latest nightly package, please use the following command:

pip install -i https://pypi-nightly.tensorflow.org/simple ml-metadata

Installing with Docker

This is the recommended way to build ML Metadata under Linux, and is continuously tested at Google.

Please first install docker and docker-compose by following the directions: docker; docker-compose.

Then, run the following at the project root:

DOCKER_SERVICE=manylinux-python${PY_VERSION}
sudo docker-compose build ${DOCKER_SERVICE}
sudo docker-compose run ${DOCKER_SERVICE}

where PY_VERSION is one of {36, 37, 38}.

A wheel will be produced under dist/, and installed as follows:

pip install dist/*.whl

Installing from source

1. Prerequisites

To compile and use ML Metadata, you need to set up some prerequisites.

Install Bazel

If Bazel is not installed on your system, install it now by following these directions.

Install cmake

If cmake is not installed on your system, install it now by following these directions.

2. Clone ML Metadata repository

git clone https://github.com/google/ml-metadata
cd ml-metadata

Note that these instructions will install the latest master branch of ML Metadata. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.

3. Build the pip package

ML Metadata uses Bazel to build the pip package from source:

python setup.py bdist_wheel

You can find the generated .whl file in the dist subdirectory.

4. Install the pip package

pip install dist/*.whl

5.(Optional) Build the grpc server

ML Metadata uses Bazel to build the c++ binary from source:

bazel build -c opt --define grpc_no_ares=true  //ml_metadata/metadata_store:metadata_store_server

Supported platforms

MLMD is built and tested on the following 64-bit operating systems:

  • macOS 10.14.6 (Mojave) or later.
  • Ubuntu 16.04 or later.
  • Windows 7 or later.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ml_metadata-0.25.1-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

ml_metadata-0.25.1-cp38-cp38-manylinux2010_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

ml_metadata-0.25.1-cp38-cp38-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

ml_metadata-0.25.1-cp37-cp37m-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

ml_metadata-0.25.1-cp37-cp37m-manylinux2010_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

ml_metadata-0.25.1-cp37-cp37m-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

ml_metadata-0.25.1-cp36-cp36m-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

ml_metadata-0.25.1-cp36-cp36m-manylinux2010_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

ml_metadata-0.25.1-cp36-cp36m-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file ml_metadata-0.25.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ml_metadata-0.25.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.5

File hashes

Hashes for ml_metadata-0.25.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e5d332e58dc0ef460fce5a2986672d3bd9ec1d96ec4a8ed3aa8b1e1c724fa017
MD5 0bc053634366f786030fe24cb0b400e3
BLAKE2b-256 9baf3c9ea5bece02fdc646213d40df261285321b187916f190956cd31d613d40

See more details on using hashes here.

File details

Details for the file ml_metadata-0.25.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.25.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.5

File hashes

Hashes for ml_metadata-0.25.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 611db85f926bf2726b8bdc09a51ca14d5b87cdb006181455c8142a69ae7429cc
MD5 e058ae75c28234deecb8b78bd5e8f697
BLAKE2b-256 a0af6c92363cb4a4faef1fc0ba3cf121faeb907e6036d06d6c2c13c8e47b8f63

See more details on using hashes here.

File details

Details for the file ml_metadata-0.25.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.25.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.8.2

File hashes

Hashes for ml_metadata-0.25.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 55b7458c88c7a7d4f0919eee5f78b85d4875df51988aaf47a9f4bafd43e3fe62
MD5 2ae17a8097b8af7a2e6f31bc1a27459c
BLAKE2b-256 f34e27ef4df83404b0a39c12a8edc71c069df89a9a5fe9c00dc170d5656834f4

See more details on using hashes here.

File details

Details for the file ml_metadata-0.25.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ml_metadata-0.25.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.0

File hashes

Hashes for ml_metadata-0.25.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 67f60858f57fc0d446b67d040a4655e94f133bcdc5e954e927be8c1cfc020717
MD5 e9ddd1acc168a77e88faf440ac2a542d
BLAKE2b-256 dedbf711568de122aa5183a9dc2a06b8b8af39d72e744b1173841b5c642bb1c9

See more details on using hashes here.

File details

Details for the file ml_metadata-0.25.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.25.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.6

File hashes

Hashes for ml_metadata-0.25.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0ef81675ea037a7245108b87b5153cad0fc23f4e7120534818813c78ccd1fae7
MD5 b77f8f96be040b73c83a932d1dd42e6f
BLAKE2b-256 a2aa2437cbac9b4f3455065532a108a40934dc3741817485d2a93eb45340c0b8

See more details on using hashes here.

File details

Details for the file ml_metadata-0.25.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.25.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.7.3

File hashes

Hashes for ml_metadata-0.25.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1bb4d69d2297758fa250cecf5eea3f81f455300ab27d646a3d377efadf60e90a
MD5 8052d90c576d223ba4c19ef6cee721c0
BLAKE2b-256 cdb150256945bfa8a23ec7de754db5d5f2cc1876140785e5241f97a107e92d99

See more details on using hashes here.

File details

Details for the file ml_metadata-0.25.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: ml_metadata-0.25.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.6.1

File hashes

Hashes for ml_metadata-0.25.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9b135ae849c276ed5e702eac1757583a0ea076228da13d56441f570782faf3da
MD5 7a9ea5da9f74249b11c48f7440bb98ef
BLAKE2b-256 d559d5e7fb3826758b1d7c7362c71c9755489b4f5cccb1e2404f13acf6110de7

See more details on using hashes here.

File details

Details for the file ml_metadata-0.25.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.25.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.6.10

File hashes

Hashes for ml_metadata-0.25.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 95edce60753d1853abcb6147cd04c3d29d0c953fabe6aa0b9a4cfe07f40334af
MD5 93c270faf15a8d973d1fcb3baffd47d8
BLAKE2b-256 ea4879c2993119144181cb005187b5199d22cdc347c2775055b343c8d277b7cc

See more details on using hashes here.

File details

Details for the file ml_metadata-0.25.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.25.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.54.0 CPython/3.6.8

File hashes

Hashes for ml_metadata-0.25.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b9f3f66e4390d81bf5f541f394cdeaa40b74f3b600d34f91ff60d528d0f4fa7
MD5 6ce45f4a9e41ae1e452c636d0c175f17
BLAKE2b-256 0146d1b12795b98fa427e98728348d79aab6187106f4dd30caa5dafadb01da15

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page