Machine learning pipeline for accelerators
Project description
ML Pipeline
Machine learning pipeline.
How to create and run an Agent?
To create an Agent you need to clone the ml-pipe-service repository and install ml-pipe-core.
git clone
mkdir .venv
pipenv install .
Afterwards you create a class which inherits form SimpleService.
class SillyAgent(SimpleService):
def __init__(self, name, adapter):
super().__init__(name, adapter)
self.factor = 1.0
def reconfig_event(self, msg):
factor = msg.get('factor')
if factor is None:
_logger.error("reconfig message doesn't have 'factor' as a key.")
else:
_logger.debug(f"set new factor to: {factor}")
self.factor = factor
def proposal(self, params):
_logger.debug(f"use factor: {self.factor}")
hcors = self.machine_adapter.get_hcors(names=self.machine_adapter.get_hcor_device_names(), is_group_call=True)
self.set_machine(SetMachineMessage({'hcor': {"names": self.machine_adapter.get_hcor_device_names(), "values": [val * self.factor for val in hcors]}}))
if __name__ == '__main__':
agent = SillyAgent('silly_agent', PetraSimulationAdapter())
agent.init_local()
Inside this class you need to overload
def proposal(self, params)
which will be called when the Agent is triggered. The Machine/Simulation can be set with
def set_machine(self, data: SetMachineMessage)
This function is taking an SetMachineMessage as input parameter. SetMachineMessage holds a python dictionary with which you can set the Machine/Simulation. Currently only setting horizontal/vertical correctors, machine parameters and twiss parameters are supported. The structure of the dictionary have to look like this:
{'hcor': {'name': str, 'values': List[float]},
'vcor': {'name': str, 'values': List[float]},
'machineparams': {'name': str, 'values': List[float]},
'twiss': {'name': str, 'mat': List[List[float]]} # only for simulation
}
Optionally you can overload
def reconfig_event(self, msg)
which give you the possibility to reset internal parameters without restarting your Agent.
After creating an Agent you need configure the agent in a yaml file.
Here is an example of config.yaml file.
Notes: You have to replace localhost with the real server name.
observer:
# used to check if jbb is done
url: localhost:5003
event_db_pw: xxxxx
# event_db_url:
event_db_usr: xxxxx
register:
# registers all services
url: localhost:5004
simulation:
# sql database which maps the machine parameter
sim_db_pw: xxxxx
sim_db_usr: xxxxx
sim_db_url: localhost:3306
msg_bus:
# message bus
broker_urls: localhost:9094,localhost:9096
Afterwards, set the path to the config yaml file in the environment value PIPE_CONFIG_FILEPATH.
PIPE_CONFIG_FILEPATH = /path/to/ml-pipe-config.yaml
To run the Agent you you can activate the python env.
pipenv shell
Afterwards you can run the Agent
python agents/testing/silly_agent.py
To interact with the pipeline (e.g trigger, start, list, stop Agents) you can used KafkaPipeClient.
from ml_pipe_core.client.kafka_client import KafkaPipeClient
pipe = KafkaPipeClient()
print(pipe.get_running_service_info())
p_id = pipe.run_service('SillyAgent')
pipe.get_observation(p_id) # wait for response
An GUI will be come soon.
Developer: Core Services and ml_pipe_core Package
The ML-Pipeline is using docker to run the infrastructure and test it locally. For this you need docker and docker-compose >= 1.28.0.
Build Docker images
To build all docker images run:
make build-all
This can take a while...
Notes: After changing code you just need to rebuild the service images, which is much faster.
make build-service-images
Start Core Services
To Start the core services of the ml-pipeline you need to set the following environment values
PIPE_EXTERNAL_HOST_ADDR=localhost
PIPE_DB_PW=xxxx
PIPE_DB_USER=xxxx
PIPE_CONFIG_FILEPATH = /path/to/ml-pipe-config.yaml
PATH_TO_ML_PIPE_SERVICES_ROOT=/path/to/ml-pipe-services
PIPE_CONFIG_FILEPATH is the path to the yaml config file, which look like this:
observer:
# used to check if jbb is done
url: observer:5003
event_db_pw: xxxx
# event_db_url:
event_db_usr: xxxx
register:
# registers all services
url: register:5004
simulation:
# sql database which maps the machine parameter
sim_db_pw: xxxx
sim_db_usr: xxxx
sim_db_url: simulation_database:3306
msg_bus:
# message bus
# external_host_addr: localhost
broker_urls: kafka_1:9092,kafka_2:9096
In production replace PIPE_EXTERNAL_HOST_ADDR=localhost with the server url and set PATH_TO_ML_PIPE_SERVICES_ROOT to the location of the cloned ml-pipe-services repository. The environment values PIPE_DB_PW and PIPE_DB_USER define the credentials for the databases used by the pipeline.
Stop Core Services
You have to stop the docker container at the end.
make down
Tests locally
Note: Docker and docker-compose => 2.80 is required to run tests locally
Run all tests:
make tests ENV_FILE=.env
Run end to end tests:
make e2e-tests ENV_FILE=.env
Run integration tests:
make integration-tests ENV_FILE=.env
Run unit tests
make unit-tests ENV_FILE=.env
Additional Stuff
Maxwell
Log in via ssh to max-wgs.desy.de
Install python 3.8.8
wget https://repo.anaconda.com/archive/Anaconda3-2021.05-Linux-x86_64.sh
sh Anaconda3-2021.05-Linux-x86_64.sh
export PATH=$HOME/anaconda3/bin:$PATH
PyTine and K2I2K_os on Machine PETRA III
The machine observer and controller for PETRA III are using the PetraAdapter which is using the libs PyTine and K2I2K_os. The Path to this libs have to be added to the PYTHONPATH.
For PyTine have a look at https://confluence.desy.de/display/HLC/Developing+with+Python.
K2I2K_os can be cloned via git from:
git clone https://username@stash.desy.de/scm/pihp/petra3.optics.tools.git
Jupyter notebook
To use KafkaPipeClient in a Jupyter notebook you need to add the virtual environment to Jupyter.
First activate the python virtual environment.
For Pipenv
pipenv shell
Start the jupyter notebook:
pip install --user ipykernel
Note: You have to add the virtual enviroment to jupyter. First, activate the virutal environment. Then run:
python -m ipykernel install --user --name=<myenv>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ml_pipe_core-0.0.23.tar.gz
.
File metadata
- Download URL: ml_pipe_core-0.0.23.tar.gz
- Upload date:
- Size: 75.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0fe245443fa6d5617c3bfe943085f197b1524441ca864e786848efb90935d43b |
|
MD5 | 0c99e3b813d3f6cf1f6ffec9026be81c |
|
BLAKE2b-256 | 843921f8dc141cab2c248d822779584d30d04a7fc58e00c5dd93cb89b0875f46 |
File details
Details for the file ml_pipe_core-0.0.23-py3-none-any.whl
.
File metadata
- Download URL: ml_pipe_core-0.0.23-py3-none-any.whl
- Upload date:
- Size: 82.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b53f88969f594a045844e488665606e189787614f367b1432619e88a0e556f3 |
|
MD5 | 7d638381f30a2caaef712859e92a50b7 |
|
BLAKE2b-256 | 5b5e31046b52790eac1f7f35ece1f4afff822537cee7a20a601c0171882a5761 |