Skip to main content

Фреймворк для работы с пайплайном ML моделей

Project description

ML Pipeline Engine

Графовый движок для конвейеров ML-моделей

Table of Contents

Usage

Что нужно, чтобы сделать свой пайплайн?

  1. Написать классы узлов
  2. Связать узлы посредством указания зависимости

Поддерживаемые типы узлов

Протоколы

  1. DataSource
  2. FeatureBase
  3. MLModelBase
  4. ProcessorBase
  5. FeatureVectorizerBase

Примеры использования описаны в файле docs/usage_examples.md

Development

Environment setup

Clone the project

git clone https://github.com/tochka-public/ml-pipeline-engine.git

Go to the project directory

cd ml-pipeline-engine

Use Python>=3.8 and the package manager poetry to install ml-pipeline-engine dependencies

poetry install --no-root

For further contribution, use pre-commit hooks to maintain consistent code format

pre-commit install -f --hook-type pre-commit --hook-type pre-push

Run tests

python -m pytest tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ml_pipeline_engine-2.0.0a0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

ml_pipeline_engine-2.0.0a0-py3-none-any.whl (1.4 MB view details)

Uploaded Python 3

File details

Details for the file ml_pipeline_engine-2.0.0a0.tar.gz.

File metadata

  • Download URL: ml_pipeline_engine-2.0.0a0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for ml_pipeline_engine-2.0.0a0.tar.gz
Algorithm Hash digest
SHA256 81ff2fd687a89d596c19af9452338cb1ca8318170d2bfba9bf66247810cba4cc
MD5 90290769a72bcd4a8bf9b83acb7030e2
BLAKE2b-256 dfb386892b9198f8654af7d41237348eedfa4dae02271e3848926a09921c9599

See more details on using hashes here.

File details

Details for the file ml_pipeline_engine-2.0.0a0-py3-none-any.whl.

File metadata

File hashes

Hashes for ml_pipeline_engine-2.0.0a0-py3-none-any.whl
Algorithm Hash digest
SHA256 af152055a5c3de501bf8fd68cfc3a9a51c12a9ec5e7759b585a042a5a9ab0bd8
MD5 297d85e2ed78087022e15ae44d6bd0e1
BLAKE2b-256 e5a4c2b46da2e193e14fbd9981bd870d409ce0f105e85ddbe507c2f135fde617

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page