Skip to main content

The easiest way to do machine learning

Project description

Build Test Downloads PyPi Version License

ML

This module provides for the easiest way to implement Machine Learning algorithms. It also has in-built support for graphing and optimizers based in C.

Learn the module here:

This module uses a tensorflow backend.

Implemented Algorithms

  • 2D CNN ml.cnn
  • Basic MLP ml.nn
  • K-Means ml.k_means
  • Linear Regression ml.linear_regression
    • optimized with C
  • Logistic Regression ml.logistic_regression
  • Graph Modules ml.graph
    • Graph any function with or without data points - from ml.graph import graph_function, graph_function_and_data
  • Nonlinear Regression ml.regression
  • Optimizers - ml.optimizer optimized with C
    • GradientDescentOptimizer - from ml.optimizer import GradientDescentOptimizer
    • AdamOptimizer - from ml.optimizer import AdamOptimizer
  • UNSTABLE - Character generating RNN - ml.rnn

You can find examples for all of these in /examples

Pip installation

pip install ml-python

Python installation

git clone https://github.com/vivek3141/ml
cd ml
python setup.py install

Bash Installation

git clone https://github.com/vivek3141/ml
cd ml
sudo make install

Examples

Examples for all implemented structures can be found in /examples.
In this example, linear regression is used.

First, import the required modules.

import numpy as np
from ml.linear_regression import LinearRegression

Then make the required object

l = LinearRegression()

This code below randomly generates 50 data points from 0 to 10 for us to run linear regression on.

# Randomly generating the data and converting the list to int
x = np.array(list(map(int, 10*np.random.random(50))))
y = np.array(list(map(int, 10*np.random.random(50))))

Lastly, train it. Set graph=True to visualize the dataset and the model.

l.fit(data=x, labels=y, graph=True)

Linear Regression

The full code can be found in /examples/linear_regression.py

Makefile

A Makefile is included for easy installation.
To install using make run

sudo make

Note: Superuser privileges are only required if python is installed at /usr/local/lib

License

All code is available under the MIT License

Contributing

Pull requests are always welcome, so feel free to create one. Please follow the pull request template, so your intention and additions are clear.

Contact

Feel free to contact me by:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ml_python-2.3.1-cp37-cp37m-macosx_10_9_x86_64.whl (30.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file ml_python-2.3.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_python-2.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 30.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.24.0 CPython/3.7.6

File hashes

Hashes for ml_python-2.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba0fea91020bd11ac053c4c9e7d4a156d2fc596641909062f9dfd9752b3c8d14
MD5 ef9242428f3236e1da37cdbe0a2010e6
BLAKE2b-256 7267a4c238bebac04b2e96c8e59a581343ed86041190c32fefe329a82d9ee0b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page